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Problem 1. The polynomial x2+5x+1 has roots a and b. Evaluate
(
a+ 1

a

) (
b+ 1

b

)
.

Answer. 25

Solution. Notice that by Vieta’s Formulas, a+ b = −5 and ab = 1. Since ab = 1,
we know that 1

a
= b and 1

b
= a, so our desired value is

(a+ b)(b+ a) = (−5)(−5) = 25 .
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Problem 2. Compute the least positive integer n such that n2 has an even
number of digits and has 999 as its leftmost three digits.

Answer. 9995

Solution. We rewrite n2 as (10k − a)2. Since it has 999 as its leftmost digits, n2

should be close to a power of 10, and because it has an even number of digits, n2

is close to an even power of 10. We then expand:

(10k − a)2 = 102k − 2a · 10k + a2.

If k ≤ 3, note that the leftmost three digits cannot be 999, since 92 = 81, 992 = 9981,
and 9992 = 998001. However, since 99992 = 99980001 satisfies the condition, the
least possible n should be close to 9999. We write:

(104 − a)2 = 108 − 2a · 104 + a2.

We want (10000− a)2 ≥ 999 · 105, which translates to the condition

2a · 104 − a2 ≤ 105.

Dividing by 104 on both sides, we get that

a− a2

20000
≤ 5.

Thus, the largest possible value of a is 5, so the smallest possible value of n is
104 − 5 = 9995 .
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Problem 3. Takaki writes down a two digit number (possibly with a leading zero)
to send to Akari. Then, James, Kyle, and Sophia take turns randomly choosing one
of the digits and changing it to a randomly chosen different digit. When Sophia
finishes her turn, she sends the number to Akari. What is the probability that
Akari gets the original number?

Answer.
2

81

Solution. First, James can change any digit to a different digit without affecting
the outcome. However, if Kyle changes the two digit number back to the original
number, it will be impossible for the written number to be the same as the original
after Sophia changes one of the digits. Similarly, if Kyle changes a different digit
from the one James changed, both digits will be different from the original. Thus,
it will be impossible for Sophia to change the number back to the original. Due
to this, there is an 8/18 probability that Kyle changes a digit so that it is still
possible for the number to be changed back to the original—he has to change the
digit James changed and not change it to the digit it originally was.

After that, Sophia has a 1/18 probability of choosing the digit James and Kyle
changed and changing it to the digit it originally was. Thus, the probability Akari
gets the original number is

8

18
× 1

18
=

2

81
.
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Problem 4. Let ABCD be a unit square with point F on BC and point E
on AD, and let X denote the intersection of EF and AC. If AE = 2CF and
BX ⊥ EF , compute the length of segment CF .

Answer. 1/6

Solution. We place the diagram on the coordinate plane, with A = (0, 1), B = (1, 1),
C = (1, 0), and D = (0, 0). Notice that because ∠XAE = ∠XCF = 45◦ and
∠AXE = ∠CXF, we have that

△AXE ∼ △CXF

by AA similarity. Because AE = 2CF and the triangle are similar, we also know
that the distance from X to line AE is the same as the distance from X to line
CF. Thus, the x-coordinate of X is 2/3. Since we also know that X lies on AC,
which is defined by y = 1− x, we now know that X = (2/3, 1/3).

Let Y = (1, 1/3) be the projection of X onto BC. We have that BY = 2/3 and
XY = 1/3. Because △BXF is a right triangle, we can see that △BXY ∼ △XFY.
Thus,

FY

XY
=

XY

BY

and from here, we obtain that FY = 1
2
· 1
3
= 1

6
. Finally, we find that

CF = 1−BY − Y F = 1− 2

3
− 1

6
=

1

6
,

as desired.
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Problem 5. Let k be a real number such that the polynomial p(x) = x3 − 6x2 +
36x − k has three distinct roots z1, z2, and z3 which form a nondegenerate right
triangle when plotted in the complex plane. Find the sum of all possible values of
k.

Answer. 112

Solution. First, notice that the roots cannot all be real. Otherwise, they will all
be on the real line in the complex plane and will form a degenerate triangle. Thus,
the polynomial will have two complex nonreal roots. WLOG let them be z1 and z2.
Since they must be conjugates of each other, the perpendicular bisector of the line
between them is the real axis, so z3 is equidistant from z1 and z2. From this, we
conclude that the triangle is a 45-45-90 right triangle, with a right angle between
the lines formed by z1 and z3, and z2 and z3. Thus, the roots must be of the form
a+ bi, a− bi, a+ b.

By Vieta’s Formulas, we find that

(a+ bi) + (a− bi) + a+ b = 6 and

(a+ bi)(a− bi) + (a− bi)(a+ b) + (a+ b)(a+ bi) = 36.

Simplifying, we obtain the equations®
3a+ b = 6

3a2 + b2 + 2ab = 36.

We rearrange the first equation to get that b = 6− 3a, and substitute it into the
second equation to obtain the following:

3a2 + (6− 3a)2 + 2a(6− 3a) = 36,

which eventually simplifies to

6a2 − 24a = 0.

Thus, we find that (a, b) is either (0, 6) or (4,−6). If (a, b) = (0, 6) then

k = z1z2z3 = (0 + 6i)(0− 6i)(0 + 6) = 216,

and if (a, b) = (4,−6) we find that

k = z1z2z3 = (4− 6i)(4 + 6i)(4− 6) = −104.

Thus, the sum of the possible values of k are 216− 104 = 112 .
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Problem 6. Let a, b be positive integers with a > b ≥ 3. A regular a-gon and
b-gon sharing a vertex are inscribed in the same circle and their vertices and the
intersections between their sides are marked. If the total number of marked points
is 35, find the sum of all possible values of a.

Answer. 115

Solution. Let d = gcd(a, b). Consider the shared vertices on the circle, which is
equal to d. Then, between every two such vertices (exclusive), there are a/d− 1
a-gon vertices and b/d− 1 b-gon vertices. Counting the number of vertices inside
the circle on each segment, we see that the sides of the b-gon cross the sides of the
a-gon twice for each vertex since there is at least one a-gon vertex between every
two b-gon vertices. This gives 2(b/d− 1) interior intersections for each of these d
segments. Thus, we find that

35 = d(a/d− 1 + b/d− 1 + 2(b/d− 1) + 1) = a+ 3b− 3d.

We may now do casework on the value of d, noting that both sides are divisible by
d so d | 35:

• d = 1. Then a + 3b = 38. From a > b ≥ 3, we find that (a, b) =
(35, 1), (32, 2), . . . , (11, 9). From gcd(a, b) = 1, we may reduce to the 4 cases
(29, 3), (23, 5), (17, 7), (11, 9).

• d ≠ 1. Then we find that d = 5, 7, 35 so a/d+ 3(b/d) = (35/d) + 3 = 10, 8, 6
for integers a/d > b/d, and in every case we must have either b/d = 1 or
a/d = 4, b/d = 2. Since gcd(a/d, b/d) = 1, we only have b/d = 1 so b = d
and

35 = a+ 3b− 3d = a =⇒ a = 35.

Adding up these cases gives 29 + 23 + 17 + 11 + 35 = 115 .
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Problem 7. One person is standing in each cell of a 4× 4 grid. How many ways
are there for each person to move to an orthogonally adjacent cell such that each
cell is occupied afterwards and no pair of people swapped places?

Answer. 88

Solution. Drawing a directed edge between two orthogonally adjacent squares if
a person went from one square to the other, we see that every vertex (cell) has
indegree and outdegree exactly 1. That is, every configuration of moving people
corresponds to a decomposition of the grid into directed cycles of length greater
than 2. We now consider casework on the sizes of the cycles.

If there are 4 cycles of length 4, we see that there is only one working configuration
for the undirected cycles:

This gives 24 = 16 ways by choosing the direction in each cycle.

If there are 2 cycles of length 4 and one of length 8, there are 4 working configurations
for the undirected cycles, given by the rotations of the following configuration:

This gives 4 · 23 = 32 ways by choosing the direction in each cycle.

If there are 2 cycles of length 8, there are 2 working configurations for the undirected
cycles, given by the rotations of the following configuration:
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This gives 2 · 22 = 8 ways by choosing the direction in each cycle.

If there is one cycle of length 4 and one cycle of length 12, there are 5 working
configurations for the undirected cycles, given by the rotations of the following
configurations:

This gives 5 · 22 = 20 ways by choosing the direction in each cycle.

Finally, if there is one cycle of length 16, there are 6 working configurations for the
undirected cycles, given by the rotations of the following configurations:

This gives 6 · 2 = 12 ways by choosing the direction in each cycle.

Now, observe that no cycle can have odd length by considering the number of
color switches on a checkerboard coloring of the grid. Furthermore, no cycle
can have length 6, since there is only one shape for a cycle of length 6 (a 3 × 2
rectangle) and no matter where it is positioned the remaining parts cannot be
partitioned into cycles. Similarly, no cycle can have length 10 since that would
force a cycle of length 6. We conclude these are the only possibilities, so the answer
is 16 + 32 + 8 + 20 + 12 = 88 .

8



Problem 8. Triangle △ABC with AB = AC = 6 and BC = 10 is inscribed in
circle Ω. A point D is on Ω with AD = 9. Find the area of quadrilateral ABDC.

Answer.
45
√
11

4

Solution 1. Rotate △ACD about A so that C is mapped to B and D is mapped
to a point D′. Since ∠ACD +∠DBA = 180◦ by the cyclicity of ABDC, it follows
that ∠ABD′ + ∠DBA = 180◦ so D′, B, and D are collinear. Thus quadrilateral
ABDC has the same area as △AD′D. We see that AD = AD′ = 9 and

DD′ = BD′ +BD = BD + CD

where 6BD + 6CD = AD · BC by Ptolemy’s theorem, so BD + CD = 15 and
AD′D is a 9− 9− 15 triangle. We may calculate the length of the altitude from A
to D′D as

√
92 − (15/2)2 = 3

√
11
2

so that the area is

1

2
· 15 · 3

√
11

2
=

45
√
11

4
,

as desired.

Solution 2. We wish to find [△ABD] + [△ACD]. By Sine Area, this is equal to

1

2
·AB ·AD · sin∠BAD+

1

2
·AC ·AD · sin∠CAD = 27 · (sin∠BAD+sin∠CAD).

Let R be the circumradius of Ω. By the Extended Law of Sines,

sin∠BAD + sin∠CAD =
BD

2R
+

CD

2R
.

As in the above solution, we find that BD + CD = 15. To find R, we use Heron’s
Formula and the identity [△ABC] = abc

4R
to find that

R =
1

4
· 6 · 6 · 10√

11 · 5 · 5 · 1
=

18
√
11

11
.

Thus the answer is

27 · 15

2 · 18
√
11/11

=
45
√
11

4
.
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Problem 9. Given that p is a prime number and

1

p
= 0.0002a240609997175b39

for some unknown digits a and b, compute p.

Answer. 3541

Solution. First, notice that since 0.0002 < 1
p
< 0.0003, we know that 3333 < p <

5000. We can rewrite the given expression as

1

p
=

∞∑
k=1

2a240609997175b39

1020k
=

2a240609997175b39

1020 − 1
.

Thus, we find that

p =
1020 − 1

2a240609997175b39
.

Notice that 102 − 1 | 1020 − 1. However, because of our bounds for p, we know that
p is not equal to 9 or 11, which means that 2a240609997175b39 must be divisible
by 99. Using our divisibility rules for 9 and 11, we obtain the following modular
congruences: ®

a+ b+ 1 ≡ 0 (mod 9)

a+ 4 ≡ b+ 3 (mod 11).

Since 0 ≤ a, b ≤ 9, we find that the only solution is (a, b) = (8, 9). Thus, we have
that

1

p
= 0.00028240609997175939

Since, we know the division on the right hand side will give an integer, we can divide
10000 by 2.824 to the nearest integer to get 3541. This division gives p = 3541 .
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Problem 10. Complex numbers a, b, and c satisfy the equations

ab+ b+ c+ 1 = 0

bc+ c+ a+ 1 = 0

ca+ a+ b+ 1 = 0.

Find the sum of all possible values of a2.

Answer. 7

Solution. Pairwise subtracting the equations, we get

b(a− c) = a− b

c(b− a) = b− c

a(c− b) = c− a

⇐⇒
(b− 1)(a− c) = c− b

(c− 1)(b− a) = a− c

(a− 1)(c− b) = b− a.

Now, consider whether a, b, c are all distinct. If they are not then assume without
loss of generality that a = b. It follows that b− c = c(b− a) = 0 so a = b = c and
it follows that a2 + 2a + 1 = 0 so a = b = c = −1. If a, b, c are all distinct then
multiplying the two columns of three equations obtained above and dividing by
(a − b)(b − c)(c − a) gives (a − 1)(b − 1)(c − 1) = 1 and abc = −1. Subtracting
these gives

−2 = abc− (a− 1)(b− 1)(c− 1) = ab+ bc+ ca− a− b− c+ 1.

Adding the original 3 equations gives

ab+ bc+ ca+ 2(a+ b+ c) = −3.

Solving this as a system of linear equations in ab + bc + ca and a + b + c gives
a+ b+ c = 0, ab+ bc+ ca = −3. Since abc = −1, we get by reverse Vieta’s formulas
that a3 − 3a+ 1 = 0. Thus the sum of all possible values of a2 is 02 − 2(−3) = 6 in
this case. This gives an answer of 6 + 1 = 7 .
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Problem 11. On the coordinate plane, Elma is at (0, 0) and Visby is at (32, 32).
Each minute, Elma chooses to either move one unit to the right or one unit upwards
with equal probability. She then moves in that direction if and only if her coordinate
in that direction is less than 32 (for example, if she is at the point (4, 32) and
chooses to go upwards, she doesn’t move that minute). Compute the expected
number of minutes that Elma will not move before she reaches Visby.

Answer.

(
64
32

)
258

Solution. We find the number of minutes and subtract 64. It is an equivalent
problem to find the expected number of minutes to enter the region x ≥ 32, y ≥ 32,
given unrestricted random upward and rightward movement. We can enter this
region at any point of the form (x, 32), or (32, y) for x, y ≥ 32. We consider
casework on which direction Elma enters from: below or left. In the case of below,
for each of the points (x, 32), the probability Elma enters there is the probability she

reaches (x, 31) at some point and then goes up, or 1
2

(x+31
31 )

2x+31 , and a similar probability
occurs for the (32, y) case. Thus, we may merge them to get rid of the one-half.
This gives an expression of

∞∑
n=32

(n+ 32)

(
n+31
31

)
2n+31

for the expected value. From the fact that (a+1)
(
a
b

)
= (b+1)

(
a+1
b+1

)
, we may rewrite

the sum as
∞∑

n=32

(
n+32
32

)
2n+26

=
1

226

∞∑
n=32

(
n+32
32

)
2n

.

From the generating function for (1− x)−33 we get that1

∞∑
n=0

(
n+32
32

)
2n

=

Å
1− 1

2

ã−33

so that our sum can be rewritten as

233

226
+

1

226

(
64
32

)
232

− 1

226

31∑
n=0

(
n+32
32

)
2n

= 128− 1

226

31∑
n=0

(
n+32
32

)
2n

+

(
64
32

)
258

.

We now show by induction the identity

k∑
n=0

(
n+k
k

)
2n

= 2k.

For the base case of k = 1, this is easily checked. Now, from the identity for k − 1,
we find that

k∑
n=0

(
n+k
k

)
2n

+ 2
k−1∑
n=0

(
n+k−1
k−1

)
2n

=
k−1∑
n=0

(
n+k−1
k−1

)
+
(
n+k−1

k

)
2n−1

+

(
2k−1
k

)
2k−1

+

(
2k
k

)
2k

=
k∑

n=0

(
n+k
k

)
2n−1

,

implying the desired result by substituting the identity for k − 1. Plugging this

into our expression and subtracting 64 gives an answer of

(
64
32

)
258

.

1See Exercise 5.7 of Evan Chen’s Summations handout.
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Problem 12. Evaluate the sum

∞∑
n=0

sin4
(
2nπ
101

)
4n

.

Answer. sin2
( π

101

)
or

1

2
−

cos
(

2π
101

)
2

Solution 1. Notice that

sin4(θ) = sin2(θ) · (1− cos2(θ)) = sin2(θ)− sin2(θ) cos2(θ) = sin2(θ)− sin2(2θ)

4
.

Thus, we can rewrite the sum as

∞∑
n=0

sin2
(
2nπ
101

)
4n

−
sin2
Ä
2n+1π
101

ä
4n+1

=
∞∑
n=0

sin2
(
2nπ
101

)
4n

−
∞∑
n=1

sin2
(
2nπ
101

)
4n

.

Thus, the sum is equal to sin2
( π

101

)
.

Solution 2. Note that sin(θ) = eiθ−e−iθ

2i
, so

sin4(θ) =

Å
eiθ − e−iθ

2i

ã4
=

e4iθ − 4e2iθ + 6− 4e−2iθ + e−4iθ

16
=

cos(4θ)

8
−cos(2θ)

2
+
3

8
.

Thus, we can rewrite the sum as

2
∞∑
n=0

cos
Ä
2n+2π
101

ä
4n+2

−
cos
Ä
2n+1π
101

ä
4n+1

+
3

4n+2
= 2

∞∑
n=2

cos
(
2nπ
101

)
4n

−2
∞∑
n=1

cos
(
2nπ
101

)
4n

+2
∞∑
n=2

3

4n
.

This simplifies to

−2 ·
cos

(
2π
101

)
4

+ 2 · 1
4
=

1

2
−

cos
(

2π
101

)
2

,

as desired.
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Problem 13. Let △ABC be a triangle with AB = 8, AC = 10, and BC = 12.
Point D is chosen on line BC such that B is between D and C. Let Ω1 be
circumcircle of △ABC and Ω2 be circumcircle of △ABD. Let tangents to Ω2 at A
and Ω1 at B meet at X, and the tangent to Ω2 at D and tangent to Ω1 at C meet
at Y . If D, X, Y are collinear, compute the length XY .

Answer.
11
√
79

9

Solution. We begin by claiming that if D, X, and Y are collinear, then D must
be the reflection of C over B. Indeed, note that the collinearity is equivalent to
the assertion that line XB, which is the B-symmedian of triangle ABD because of
its concurrence with the tangent intersection point, is tangent to Ω1 at B. Then,
by the Ratio Lemma, using the fact that the symmedian and median are isogonal
conjugates, we get

AB

BD
=

sin(∠ZBA)

sin(∠ZBD)
.

Let point Z be the intersection of line BX with segment AD. Note that ∠ZBD =
∠XBC = ∠BAC, where we make use of the angle condition for the tangency of
BX. Similarly, we get ∠ZBA = ∠ACB. By the law of sines in triangle ABC, we
get

BC

sin(∠BAC)
=

AB

sin(∠ACB)
=⇒ AB

BC
=

sin(∠ACB)

sin(∠BAC)
=

sin(∠ZBA)

sin(∠ZBD)
=

AB

BD

giving BC = BD, as desired. Note that XY = DY − DX, and thus it suffices
to compute the two lengths on the right hand side. From tangency, we get
∠CDY = ∠DAB and ∠DCY = ∠BAC, so we have

∠DY C = 180◦ −∠DCY −∠CDY = 180◦ −∠BAC −∠DAB = ∠180◦ −∠DAC

giving that ACYD is a cyclic quadrilateral. Thus, ∠DAB = ∠CDY = ∠CAY
and ∠ADB = ∠ADC = ∠AY C, so △ABD ∼ △ACY . From Stewart’s Theorem
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on △ACD, we get AD = 2
√
79. Applying our similarity with ratio AC

AB
= 5

4
, we

get CY = 15 and AY = 5
√
79
2

. From Ptolemy on ABYD, we now get DY = 3
√
79.

Note that ∠ADX = ∠ADB + ∠BDX = 180◦ − ∠ABD. From the law of cosines
on △ABD, we get − cos∠ABD = cos∠ADX = 9

16
. Considering the right triangle

formed by dropping the perpendicular from X to the midpoint M of isosceles
triangle △AXD, we get DM =

√
79 so DX =

√
79 · 16

9
. Finally, computing

XY = DY −DX, we get XY =
11
√
79

9
.
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