1. [6] Quincy writes the numbers 1, 3, 4, 8, and 9 on a chalkboard. Every minute, he replaces two numbers
m and n on the chalkboard with 5m + n. Compute the maximum possible value of the final number on the
chalkboard.

Proposed by Gabe Levin

Solution. Note that we are just expressing a permutation of the given numbers as a “base-5” numeral,
without the restriction that digits are less than 5. Thus we want the digits to be in decreasing order, so the
answer is 9- 51 +8-5% +4-52+ 3.5+ 1 =6741|.

2. [6] Compute the number of positive integers n < 50 such that both n and 50 — n have an even number of
divisors.
Proposed by Gabe Levin

Solution. We are just counting the number of positive integers n such that n and 50 — n are both not
squares, so we use complementary counting. For any perfect square less than 50, we can choose to put it in
the first coordinate of the pair or the second, giving 14 pairs. However, the pairs (1,49), (49,1), and (25, 25)
are counted twice, so there are only 11 pairs. Thus, the answer is 49 — 11 = .

3. [7] Percy rolls eight fair six-sided dice and records their values a, b, ¢, d, e, f, g, and h. If P is the probability
that

(a+ )t (e + )9t = 2025,

and P = p%®r¢ where p, q,r are distinct primes and a, b, ¢ are nonzero integers, compute pa + qb + re.
Proposed by Tanvir Ahmed

Solution. We can either express 2025 as 9252 or as 3*52. Suppose e + f = 5 and g + h = 2. Then, we have
4 choices for (e, f) and 1 choice for (g,h), so 4 choices for (e, f,g,h). If a+b =9 and ¢+ d = 2, then we
have a total of 4 choices for (a,b,c,d), while if a + b = 3 and ¢ + d = 4, we have 2 choices for (a,b) and 3
for (¢, d), for a total of 6 for (a,b,c,d). We may also swap (a, b, c,d) and (e, f, g, h), so there are a total of
2-4- (4 +6) = 80 valid octuples. Thus, P = 80/6° = 5271378, for an answer of 5 — 8 — 24 =[—27|,

4. [7] Let ABCDE be a pentagon and suppose AB || CD and BC' || DE. Compute the area of this pentagon
given that AB = BC =15, CD =21, DE =5, and FA = 8.
Proposed by Gabe Levin

Solution. Extend DFE and AB to meet at X so that X BCD is a parallelogram:
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Observe that X AF is a right triangle with side lengths 6, 8, and 10. Thus FA is 2/3 the height of the
parallelogram, so that [X BCD] = 12 - 21 = 252. The area of X AE is 24, so [ABCDE] = 252 — 24 = [ 228,

. [8] Let z = 12523 — 12483. Compute v/z — 16.
Proposed by Gabe Levin
Solution. If ¢t = 1250, then we are computing +/(t +2)3 — (t —2)3 — 16 = V122 + 16 — 16 = 2t\/3 =

12500V3]

. [8] Compute

m
E E n .

Proposed by Gabe Levin

Solution. Note that for each k, 7] = 2F whenever n = 2" and m = 2+ so that there are 11 — k choices
for m and n. Thus we are computing

10
S=) 2¢11-k).
k=0

Then
11

10 10
S=29-85=) 2"12-k) - > 2"11-k) =2" —114+) 2,
k=1 k=0 k=1

which evaluates to 2 - 211 — 13 = 4083 |.



7. [9] Let ABC be a triangle with AB = 1, BC = /3, and CA = 2. Let O be the circumcircle of ABC and
let ¢ be the tangent to O parallel to AC' and closer to B. Suppose £ intersects O at P. Compute the area of
triangle OPB.

Proposed by Gabe Levin

Solution. Shown below is a diagram:

Notice that ABC' is a 30-60-90 right triangle, so AABO is equilateral, and thus ZAOB = 60°, Furthermore,
since AC is a diameter of the circle, we must have that PO 1 BC, so ZCOP = 90°. Thus, ZBOP = 30°,

1
so [OPB] =4 -1-1-sin30° :.

8. [9] Call aset S C {1,2,...,2025} corwizzy if for any a,b € S with ab < 2025, ab € S. Compute the smallest
positive intege r n > 1 such that there exists a corwizzy set S whose elements sum to n.

Proposed by Gabe Levin
Solution. Note that any corwizzy set S has an element greater than 45, as otherwise we have (max S)? € S,
a contradiction (since n > 1). Thus the answer is at least |46, and clearly {46} is corwizzy.
9. [10] Let O be a circle and XY = 8 be a diameter of O. Let A lie on O and let the circle with center X and
radius X A intersect O at B # A. Compute the maximum possible area of triangle ABY .

Proposed by Gabe Levin

Solution. Clearly, AX BY forms a kite, so B is just the reflection of A over XY. Let Z be the foot of the
altitude from A to XY, and let x = ZY.



Thus, XZ = 8 — z. Since AXY and AZ is the altitude to the hypotenuse, AZ = VXZ -YZ = \/x(8 — x).
We are trying to maximize [ABY| = AZ - YZ = x\/x(8 — x). It suffices to maximize the square of this
quantity instead, which is 23(8 — x). It suffices to maximize 2% times this quantity, which is

by AM-GM, with equality when § = 8 — . This implies that x = 6 is optimal, in which case [ABY] =

66 -2 =]12V3|.

10. [Up to 10] Submit an ordered quadruple of integers (a, b, c,d) with 0 < a,b,c,d < 50. Let R be the axis-
aligned rectangle who’s bottom left vertex has coordinates (a, b) and who’s upper right vertex has coordinates
(¢,d). If R coincides with another teams rectangle or if R has non-zero intersection with another teams

cl

rectangle and neither contain each other, you get 0 points. Otherwise, you get % points.

Proposed by Lucas Pavlov



11.

12.

13.

[11] Given a circular mirror, at how many angles strictly above the horizontal from the south pole can a
laser be shot such that it bounces at most 20 times before returning?

Proposed by Lucas Pavlov

Solution. Here is an example of the ball bouncing 4 times and returning.

A
\J

We first consider the number for the laser to bounce exactly n times before returning. Let 6 be the angle of
the arc formed by the south pole and the point at which the laser is shot in radians. Then, including the
spot at which the laser is shot at, the laser will divide the circle into n + 1 equally sized arcs. Thus, (n+1)6
must be a multiple of 27, but kf can’t be a multiple of 27 for any k¥ < n + 1. Therefore, 6 = 7%]1 for some
positive integer j < n, and the other condition is equivalent to ged(j,n) = 1 because otherwise, we could
reduce this fraction. Thus, there are p(n + 1) ways to bounce the laser such that it returns after exactly n

bounces. The final answer is thus

21
> p(n) =[139]
n=2

[11] What is the largest positive integer k such that there exist k consecutive four-digit positive integers,
each with no more than 3 distinct digits?

Proposed by Gabe Levin
Solution. Clearly the set {9877,9878,...,9999}, with size , is such a set of integers, as the largest four-

digit integer with four distinct digits is 9876. To show maximality, observe that, if a set contains elements
with different first digits, say n and n + 1, the minimal element of the set is at least n976 (unless n = 9,
in which case n + 1 = 10, which is too large). The maximal element of the set is (n + 1)013, for a set size
clearly less than 123. Thus any such set has all elements starting with the same digit, say n. Clearly, then,
it is optimal for the set to contain all integers of the form nnzy. If n # 9, then the set cannot contain both
of n(n —1)98 and n(n — 1)96, as it only contains the former if n = 8. Moreover, the set cannot contain both
of n(n +1)01 and n(n + 1)03, as it only contains the former if n = 1. Thus the maximum length of the set
is 108. If n = 9, we can clearly see that the set cannot contain 9876, so the set listed above is the largest
such set.

[12] An 8 x 9 grid is filled with the 72 divisors of 36000, randomly and without replacement. CrussoCode
randomly and uniformly picks one of the squares, and computes its prime factorization along with the prime
factorizations of its neighbors (only lateral neighbors, not diagonal). What is the probability that each such
prime factorization has pairwise distinct exponents for each prime factor of 360007

(For example, 223 and 2432 have pairwise distinct exponents as 3 # 4 and 3 # 2, but 2432 and 2332 do not,
as 2 =2.)

Proposed by Gabe Levin
Solution. Note that 36000 = 2°3253. For any chosen square that is not a corner, the set containing the
square and its neighbors has at least four elements. However, there are only three possible exponents for

the prime 3. Thus the square must be a corner. We then count the number of possible sets of exponents for
each of the three prime factors, which are 6-5-4,3-2-1, and 4 -3 - 2. Thus, the answer is

4 (6-5-4)(3-2-1)(4-3-2) 4

72 72-71-70 1491 |




14.

15.

[12] For how many ordered triples of integers (a,b,c) satisfying 0 < a,b,c¢ < 20 do there exist integers
(z,y,2) # (0,0,0) satisfying

axr = by + cz

br = cy+az

cr = ay + bz?

Proposed by Gabe Levin

Solution. Adding the equations, we see (a+b+c)x = (a+b+c)(y+2). If (a,b,c) # (0,0,0), then x = y+ 2.
Thus we have ay + az = by + ¢z and by + bz = ¢y + az. Thus, (a — b)y = (c—a)z and (b — ¢)y = (a — b)z.
WLOG a < b < ¢. Then we have (a — b)%y = (¢ — a)(a — b)z = (¢ — a)(b — ¢)y. Looking at signs, we see
(a — b)? is nonnegative, while (c — a)(b— c) is nonpositive, so that a = b = ¢, giving solutions. (If y =0,
we have bc = a?, again implying a = b = c.)

Solution. We can rewrite this system of equations as

axr —by—cz=0
br —cy—az=0

cx —ay —bz=0.

(0,0,0) is always a solution to this system, so for there to be any other solutions, the determinant of the
coefficient matrix must be 0. Notice that

a —b —c
b —c —a|=3abc—a® b —c*=—(a+b+c)(a® +b? +c* —ab— ac — be).
c —a —b

Thus, a +b+c =0 or a® +b? + ¢ = ab + ac + be. The first case corresponds to (a,b, c) = (0,0,0), and note
that by weighted AM-GM (in particular, adding up the inequality a? + b?> > 2ab cyclically) or Muirhead’s
inequality, the second case only holds if a = b = ¢. Either way, there are nonzero solutions exist if and only
if a = b = ¢, and we get an answer of as in the previous solution.

[13] Let ABC be a triangle with AB = 13, BC = 14, and CA = 15. Let X be the foot of A onto BC' and
let D and E be the feet of X onto AB and C'A respectively. Compute DFE.
Proposed by Gabe Levin

Solution. Here is a diagram:




16.

17.

Note that ADXE is cyclic with diameter AX as it contains two opposite right angles. The radius of this
circumcircle is %AX. [ABC] is well known to be 84 for a 13-14-15 triangle, so AX = 2- % = 12, and thus

14
the radius of the circle is 6. In a similar fashion, we can find that the altitude from B to AC' is %, SO
. 168/15 168
A= TG
Finally, by the Law of Sines,
168 672

DFE =2Rsin A =12-

13-15 | 65 |

[13] Let ay, b, be sequences with a; = 6, by = 7 and

2

Qp4+1 = bn + anbn
2

bn+1 = ap” + anby,

for all n > 1. Compute the number of divisors of ajg.
Proposed by Corwin Eisenbeiss

Solution. Let z, = a, + b, and y, = a,, — b, for all n. Adding and subtracting the given equations yields

ant1+bpi1 = an2 + 2a,b, + bn2

2 2
Ap4+1 — bn+1 =by" —ay

which in the context of our new sequences means

2
Ip4+1 = Tn

Yn+1 = —TnlYn-

Since 1 = a1 + b1 = 13, z, = 132" so T = 132" = 13 . 132°-1, Moreover, y; = —1, so yig is positive,
meaning y19 = Tog- - T10 = 132°427++2° — 132°~1  Moreover, ajg = xlozw = 71321 = 71 . 13511 4
ap has (14 1)(511 + 1) =|1024 | divisors.

[14] Mario starts at (0,0,0) and is trying to reach Peach’s CASTLE at (41,6,7). Every time he moves,
Mario can do one of the following;:

(i) Move +2 units in the z direction

(ii) Choose two of the x,y, z-directions and move +1 units in both of them

Let N be the number of distinct paths that Mario can take to Peach’s CASTLE. Find the sum of the distinct
prime factors of N.

Proposed by Steven Breger

Solution. Every move must increase the sum of Mario’s coordinates by 2, so Mario will make % =27

moves in total. We can first choose 6 moves in which Mario will move in the y direction and then 7 moves
in which he will move in the z direction. The moves that we choose for the y and z directions may overlap.
Then, For all moves that don’t have 2 directions already determined, we make Mario move in the = direction.
Thus, N = (¥) (%) =2*-35.5-112 132 23, which gives an answer of 2+ 3 + 5+ 11 + 13+ 23 = [57].

Solution. We construct a three-variable generating function to represent Mario’s movement. In particular,
we consider (22 + 2y + xz + y2)?". Bach term of 22 + xy + xz + yz represents one of the possible moves
Mario can make, and we raise it to the 27th power since Mario makes 27 moves. Note that this factors as

(z+9)* (z +2).

We want to find the coefficient of 2%!9627. This term can only be attained by multiplying the 3® term
from (z + y)?" and the 27 term from (z + 2)2”. By the binomial theorem, the product of the corresponding

coefficients is (267) (277), and we get the same answer as in the previous solution.



18.

19.

[14] Let f be a function such that f(p*) = p* +p*~! for prime p and positive integer k and f(ab) = f(a)f(b)

for all relatively prime integers a,b. Find the sum of all possible distinct values of g(gi?gg for integer x.

Proposed by Corwin Eisenbeiss

Solution. Note 2024 = 452 — 12 =44 - 46 = 23 - 11 - 23. As such, let = mn such that all the factors of 2,
11, and 23 are in m so m and n are coprime and similarly 2024m and n are coprime. It follows that

£(2024z) = f(2024mn) = f(2024m) f(n)

and similarly
2024 f(x) = 2024 f(mn) = 2024 f(m) f(n)

so we have

f(2024z)  f(2024m)f(n)  f(2024m)

2024f(z)  2024f(m)f(n)  2024f(m)’

If m = 2%-11% - 23¢, this expression becomes

f(2024m) B f(2a+3 .16+ 23c+1) B f(2a+3) f(llerl) f(230+1)
2024f(m)  23-111.231. f(20.110-23¢) ~ 23.f(20) 111 f(11%) 231 f(23¢)

Note that f(p*) = p¥ + pF~1 = pF (1 + %) holds for k£ > 0 (possible exponents) unless k = 0 where it is 1.
Thus if d > 0,
Jprth P )

= = 1
ph R ptph(1+ D)
unless & = 0 whence f(p¥) = 1 and the fraction is %:) =1+ %. Thus, depending on whether m has the
prime or not, each j; [SZ}IZ;:; is either 1 or 1+ %. Each possible value made by combining these is distinct as the

denominator is not divisible by p if 1 is picked and it is if 1 + % is picked. As such, we may simply evaluate

o) ) o)) () (8) [0

[15] Let triangle ABC have AB =5, BC = 6, and CA = 7 and P be a point in the plane. If X, Y, Z are
the feet of the altitudes from P to AB, BC, and CA, find the minimum possible value of PX?+ PY? + PZ?
across all P.

Proposed by Corwin Fisenbeiss

Solution. A diagram is shown below.




20.

The key observation is that PX - BC = 2[PBC] and analogously PY -C A = 2[PCA] and PZ-AB = 2[PAB].
Summing these, we get

PX -BC+ PY -CA+ PZ-AB = 2[PBC] + 2[PCA] + 2[PAB] > 2[ABC]

where the last is really an inequality because P may lie outside the triangle. By the Cauchy-Schwarz
inequality, we deduce

(PX?% 4 PY? 4 PZ*)(BC? + CA* + AB*) > (PX - BC + PY -CA+ PZ - AB)? > (2[ABC])? > 4[ABC)?
with equality if and only if PX = ABC, PY = AC A, PZ = \AB for some real A\. We may calculate
BC? + CA? + AB? = 6* + 7> + 5 = 110
This means

4[ABC)?
PX%2+PY?+pP2Z%> )
TP 2 e T oA L AR

The semiperimeter is s = 9, so by Heron’s formula

[ABCT? =9(9—5)(9—6)(9—7)=9-4-3-2=216.

432
Substituting, this means the minimum is % =|—|
55

To see that equality may hold, we in essence need to find a point P for which PX : PY : PZ = BC :
CA:AB =6:7:5 or in other words a point P for which [PBC|: [PCA]: [PAB] =36 : 49 : 25. If we take
the point C" on AB for which P = C’ causes [PBC] : [PCA] = 36 : 49, then for all P on CC’, the heights
of ACPA and ACC’A are the same and similarly for ACPB and ACC'B so [PBC] : [PCA] = 36 : 49,
meaning all points on a cevian of the triangle through C' satisfy [PBC] : [PCA] = 36 : 49. There is similarly
a cevian of the triangle through A, all points on which satisfy [PCA] : [PAB] = 49 : 25, and so their
intersection gives our desired minimum.

[Up to 28] Welcome to USAYNO!

Instructions: Submit a string of 6 letters corresponding to each statement: put Y if you think the statement
is true, N if you think it is false, and X if you do not wish to answer. You will receive w points for
n correct answers, but you will receive zero points if any of the questions you choose to answer are incorrect.
Note that this means if you submit “XXXXXX” you will get one point.

(a) Let ABC be a triangle and A’ be the reflection of A over BC. Define B’ and C’ analogously. It is
possible for triangle ABC to be strictly inside of triangle A’B’'C".

Proposed by Lucas Pavlov

(b) Given triangle ABC, there always exists a point P in the same plane such that PA: PB: PC =41 :
67 : 69.

Proposed by Steven Breger

(¢) Put an infinite, axis-aligned grid on the coordinate plane. Let a phone be a contiguous path of squares

of the grid (that is, no 2 x 2 set of squares is completely on the path). Call a phone new if it is possible

to get from one end of the phone to the other while staying on the squares of the phone and only moving
up or to the right. Any new phone can tile the grid.

Proposed by Lucas Pavlov

(d) Let f(z) = %5 and g(x) = B2 be functions with real coefficients on the reals such that f(f(x)) and

g(g(x)) are not the identity. Suppose f(g(z)) = g(f(z)) for all z. Then f(z) — z and g(z) — = have the
same roots.

Proposed by Gabe Levin



(e) The function f: R — R is defined by

3T T T 3T
R 6 2 - 6 0 - 6 n - 6 2N
f(x) =sin <a: 8>+sm (a: 8)+S1n (a:+8)+s1n <x+ 8>'

For any z € R, there exists some y € R such that 0 < [z —y| < § and f(z) = f(y).
Proposed by Gabe Levin
(f) For all positive integers n > 1 and k < n, ged((}),n) > 1.
Proposed by Gabe Levin

Solution. | NNYNYY |

(a) The claim is . We claim that A’B’ intersects AC and BC' if and only if ZC < 60°. Here is a
diagram:

B/

A/

Notice that A’B’ intersects AC and BC' if and only if the angle ZA'C'B’ (particularly the side of the
angle that contains segment AB) is less than or equal to 180°. However, this angle is just ZA'CB +
/BCA+ ZACB' = 3/C, so this condition is equivalent to ZC < 60°. AABC must have an angle less
than or equal to 60°, so at least one of the sides of A’B’'C’ intersect ABC, which means it can’t be
contained strictly inside ABC.

(b) The claim is [False| Define S = {P | PA: PB = 41 : 67} and define T = {P | PA : PC = 41 : 69}.
Note that for some point P, if P € S and P € T, then PA: PB : PC =41 :67:69. We are thus left to
prove that S N7 can be empty for some ABC.

Let F', F’ be the two points on line AB that divide AB into a ratio of 41 : 67. Let E and E’ be the two
points on line AC that divide AC' into a ratio of 41 : 69. Let wg be the circle with diameter F'F’ and



let wg be the circle with diameter FE’. Let X be a point on wr and Y be a point on wg. Then, by
the angle bisector theorem, wp is the Apollonian circle of AABX while wg is the Apollonian circle of
AACY. Thus, S = wp and T = wg. All that is left to do is to construct ABC' such that wp and wg do
not intersect.

Imagine fixing segment AB and moving point C' far to the side. wr would not change or move while
wg would grow large leaving wr contained completely inside it. This is pictured in the diagram below.
There are, in fact, many ABC where these circles do not intersect.

WwE

(c¢) The claim is . By taking a new phone, copying it, and moving it up one square up and one square
left or one square right and one square down, we can create diagonal strips of squares in the plane. For
example, suppose we have the following new phone:

We can tile this new phone to form diagonal strips as follows:



These diagonal strips can be tiled together to cover the entire plane.

(d) The claim is [False| Let f(z) = 222 and let g(z) = —1. Then g(f(z)) = —1 and f(g(z)) = f(~1) =
53 = —1. Thus f(g(z)) = g(f(z)). Moreover, g(g(2)) = —1 # 2 and f(f(2)) = f(0) = —3, so that f>
and g2 are not the identity. However, f(z) — z has roots —1 and —2, while g(z) only has a root at —1.

The claim 4s true, however, if we add the additional constraint that f and g are nonconstant. We
leave the proof as an exercise.

(e) The claim is . We prove the stronger claim that f is constant. We redefine f by shifting down ¢
to give an easier formulation of

f(z) = cos®(x) + sin® (w - %) + sin%(z) + sin® (m + %) .

If we let s = sinz and t = cosz, note that sin (z — Z) = %(s —t) while sin (z + §) = %(s +t). Thus

flz)=s®4+15+ % ((s—=1)°+ (s +1)%)

= % (s —1)° +8(s® +1%) + (s +1)°)

1
=3 (10s% 4 30s"* 4 30s7* 4 10t°)
_ 92 23 0
- 4(3 +t ) - 47
as desired.
(f) The claim is . Let p | n and v = v,(n) and suppose p 1 (}) for some k. By Lucas’ theorem,

() =T0(5) 70 i

3
where n; and k; are the ith digits in the base p representations of n and k respectively. Then note that
Ny—1 = Ny—g =-+-=ng =0. Thus ky,_1 = ky_g2 = --- = kg = 0, so that p” | k. Thus if ged (n, (2)) =1,
p*»(") | k for each p | n. Thus n | k, as desired.

21. [16] For positive integers n and k, let 1(n) be the smallest positive integer such that niyy(n) is a perfect
kth power. Call a positive integer n psichotic if there exists a square-free positive integer N such that

n= Y ots(d)e(Ws(d)ewr(d)).

d|N104



22.

23.

Find the number of positive integers n < 2025% that are psichotic (recall that for positive integers n, ¢(n) is
the number of integers relatively prime to n between 1 and n inclusive).

Proposed by Tanvir Ahmed
Solution. Let

FIN) =D o(s(d)p(vs(d)e(r(d)).

d|N104

We first evaluate f(p) for primes p. The sum ranges over all divisors d = p* of p'%. Since 0 < k < 105, k
can also be uniquely described by its residue mod 3, 5, and 7 by the Chinese Remainder Theorem. If k = —a
(mod 3), k= —b (mod 5), and k = —¢ (mod 7), where 0 < a < 3,0 <b<5,and 0 < ¢ < 7 then ¥3(k) = p%,
¢s5(k) = p’, and (k) = p°. Thus,

Fo) =D es@) | | D e@s@) | [ D ewr(d)

d|N2 d|N4 d|N6
= (o(1) + o) + () (1) + -+ o)) (1) + - - - + o (p°))

since after expanding the parentheses, the term corresponding to every divisor of p'%* is counted exactly
once, by our CRT argument. Note that the above product gives us f(p) = p? - p* - pb = p'2.

Now we prove that f is multiplicative. First of all, 1 is clearly multiplicative since it acts on each distinct
prime divisor of a number independently, and for ged(m, n) = 1, all prime factors of 1;(m) are prime factors
of m and analogously for ¥y(n), so ged(¢r(m), ¥r(n)) = 1. Therefore, since ¢ is multiplicative,

p(r(mn)) = o(Yr(m)yr(n)) = @(r(m))e(Yr(n)),

s0 @(¢r(N)) is multiplicative. Thus, ¢(13(N))e(¥s5(N))p(7(N)) is also multiplicative. f(N) is just the
sum of this function over all divisors of N'04 which is also multiplicative. Thus, for all square-free N,
f(N) = N'2. The problem thus reduces to counting the number of square-free positive integers whose 12th
power is less than or equal to 2025°%, which is equivalent to counting the number of square-free positive
integers less than or equal to /20256 = 45. It is relatively easy to count that there are such integers.

[16] Compute the maximum value of

_ )
ot 4203 — 22— 20+ 3

f(z)

as x ranges over R.
Proposed by Gabe Levin
Solution. Let y = 22 + z. Then

fla)= 42 I 2 (g2t B
r) = —F/F/7T""== _ — — _ .
Z—2y+3 \UTy—2 Y y—2
By AM-GM we have |(y —2) + %) > 2¢/3. If y — 2 is negative, we then achieve a maximum value of

V3-1
T

(2 — 2v/3)71 <0, whereas if y — 2 is positive, we achieve a maximum value of (2 + 2v/3)~! =

[17] Aditya tags each point (a,b) where a and b are integers with the number a? + b%. Andrew starts at
(0,0) and every minute, he walks either up 1 unit or right 1 unit with equal probability. After 22 minutes,
Megan sums the tagged numbers on each point of Andrew’s walk. What is the expected value of this sum?

Proposed by Corwin FEisenbeiss and Steven Breger



24.

Solution. Let x; be the number Aditya tagged at Andrew’s position, ¢t minutes after Andrew began walking.
Then define y; = x; — x;_1 for i = 1,...,22. The key idea is to think about the z; in terms of the y;. We
want to find E(zq 4+ 22 + - -+ + z22) (since z¢p = 0) and so rewriting this using linearity of expectation, we

want
22

E(x1) +E(z2) + - + E(wae) = > E(a).
k=1

Notice that zg = 0, so

1 =Y
T2 = Y1 + Y2
3=+ Y2+ Y3

To2 =Y1t+Y2+ys+ -+ Y2

which means after applying linearity of expectation

k k
n=1 n=1

Suppose Andrew is at (a,b) n — 1 minutes after he begins walking. Then z,,_; = a? +b? and he has an equal
probability to move to (a + 1,b) and (a,b+ 1), meaning the expected value of x,, is

1 1 1
5((a+1)2+b2)+§(a2+(b+1)2):5(2a2+2a—|—1+2b2+2b+ 1)
=a’+ bV +a+b+1.

Furthermore, n — 1 = a + b because each move Andrew either increases his z-coordinate by 1 or his y-
coordinate by 1. We deduce n = a + b+ 1 and so

E(yn) = E(zn — 2n-1)
= E(zn) — E(zn-1)
=ad®>+b*+a+b+1—(a®+b%
=a+b+1

= n.

Applying our formula for xj, this means

xk:zk:IE(yan“:zk:(?) - <k_2H>

n=1 n=1

by the Hockey Stick identity. Then, evaluating the expected value gives

yre=3(3)-5()-(5)

again by the Hockey Stick identity, giving (2;) = 2024 | as the answer.

[17] How many ordered pairs of positive integers (a,b) with a > b and a + b < 1000 have an integer solution

x to
Va—z+(b+2)=(a—1)—Vb+a?

Proposed by Gabe Levin
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Solution. We rearrange to get

Va—xz+Vb+z=a—b—2x.

Thus we see that

Va—z—Vb+r=1

Letting t = GTH’ and u = “be —x, we have Vt+u + Vt—u = 2u and Vt+u — /t —u = 1. Thus
Vit +u=(2u+1)/2, so that

2 1
t+u=mu —f—u—i—z,
and thus
1 1 1
_ —b—-2 = = —— = —V2 2b—1.
2(& b—2x)=u t 1= 3V a+2b
Thus

x:%(a—b—m).

Thus we just need a > b, a — b odd, and 2a + 2b — 1 a square. Let 2a + 2b — 1 = (2k — 1)?, so that
a+b=2k>—2k+1 (so a—bmust be odd). For each such k, there are exactly k? — k values of (a,b) with
a>band a+b=2k*>—2k+1. Also, a+ b < 1000 implies 2a + 2b — 1 < 1999, so the maximum such k is
22. Thus we have a final answer of

22
Sow-k=2(Y) =[50l
k=1

[18] Compute all ordered pairs of integers (a,b) such that

289
=982 —-9)—20+7.
<a+b> ( ) +

Proposed by Alicia Li

Solution. Take the equation modulo 17. Since 289 = 172 is a power of 17, 17 will divide the choose
coefficient so long as a +b # 0, 289. This would mean 17 | 98(b? —9) — 2b+ 7, but 9% = 3¢ which is 1 modulo
17 by Fermat’s Little Theorem, so we deduce 17 | b2 —9 — 2b+ 7 which we may rewrite as 17 | (b—1)2—3 or
(b—1)2=3 mod 17. One may manually check that 3 is not a quadratic residue modulo 17, meaning there
is no  such that 22 = 3 mod 17. Alternatively, one may compute the Legendre symbol using the Law of

Quadratic Reciprocity to find
3Y_ (1T _ (2 __,
17) \3) \3)

and so 3 is not a quadratic residue modulo 17. This means (b — 1)> = 3 mod 17 is not possible and
a + b must be either 0 or 289. In either case, the choose coefficient evaluates to 1 and we are left to solve
9%¥(b? —9) —2b+T7 =1 or 98(b> —9) — 2b+ 6 = 0. We may factor this as

®b+3)(b—3)—20b—-3)=0
(93(b+3) —2)(b—3) =0.

The first term cannot evaluate to 0 (say, by taking the value modulo 9), so b = 3 is the only possible case.
Then a4+ b =0 or a + b = 289, giving us our only solutions ‘ (—3,3) and (286,3) ‘

[18] Let ABC be a triangle with AB =7, AC =8, and BC = 5. Let P be an arbitrary point on BC and E
and F' be on AB and AC, respectively, such that BE = BP and C'F = CP. If D is the reflection of P over
the angle bisector of ZA, find the minimum possible area of ADEF.

Proposed by Corwin Eisenbeiss

Solution. Reflect F and F over the angle bisector of ZA to @ on AC and R on AB and let w be the
circumcircle of APEF. Let the center of w is I and the feet from I to BC and the feet from I to BC, CA,
and AB be X, Y, and Z, respectively. Shown below is a diagram.



The perpendicular bisector of PE bisects ZB and passes through I. Similarly, the perpendicular bisector of
PF bisects ZC and passes through I, so we may deduce I is the incenter of AABC. As such, reflection over
Al must preserve w and so D, E, F', P, ), R all lie on w. Furthermore, ADEF = APQR by reflection so
we can instead minimize the area of APQR.

Our main claim is APQR ~ AXY Z. Notice ABPE ~ ABXZ so

LXZY =/BXY = /BPE = /BEP = ZPQR

and similarly ACPF ~ ACXY so

LXYZ=/CXZ=/CPF =/ZCFP =180° - ZPFQ = ZPQR

and we have APQR ~ AXY Z as desired.

Then since all such APQR are similar and have circumcenter I, the area is minimized when the circumra-
dius is minimized, i.e. w is the incircle and P = X meaning Q = Y and R = Z. Now, using AY = AZ,
BX = BY,and CX = CZ, one may derive AY = AZ =s—a, BX =BY =s—b,CX = (CZ = s—c where
s is the semiperimeter and a = BC, b = CA, ¢ = AB. Then s = W =10anda=5,b=8,¢c=7so0
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AY = AZ =5, BX = BY =2, CX = CZ = 3. From here, we compute the area of AXY Z as follows

B (XY Z]
(XY Z] = [ABC] ABC)
_ (4BC] [ABC] [AYZ] [BXY] [CXZ]
[ABC] [ABC] [ABC] [ABC]
_ (B0 (1 2 AY -AZ -sin/ZA -BX-BY -sin/B §-AY-AZ-sinZC
B 1 AB-AC-sin/A L1.BC-BA-sin/B L1.CA-CB-sinZC
AY -AZ BX-BY AY-AZ
[BC]< AB-AC BC-BA CA-CB>
5.5 2-2 3.3
= [ABC](1- — —
[ q( 7-8 5.7 8~5>
56 25 4 9
[ABC](%‘%‘%‘m)

Using Heron’s formula,

[ABC] = v/s(s —a)(s — b)(s —¢) =V10-5-2-3 = 10V/3

15v/3
|

and so the answer is % -10V/3 =

[19] Consider a 40-cycle graph C and let A be a vertex of C, let B be a neighbor of A, and let A" and B’ be
their antipodes, respectively. Consider the graph C’, whose vertices are exactly the vertices of C', and whose
edges are the edges of C, as well as the edges connecting each pair of antipodal vertices, for a total of 60
edges. Let a borisaurus be a partition of a graph’s vertex set into 4-vertex subsets such that in each subset
S of the partition, the following two conditions hold:

(i) for any s in S, there exists s’ such that s and s’ are connected by an edge,

(ii) for any s,s" in S with s and s’ connected by an edge, there is a third vertex s” in S such that s” is
connected by an edge to at least one of s and s'.

How many borisauruses on C’ satisfy the additional condition that if both A and B or both A’ and B’ are
in the same subset S of the borisaurus, then that set is precisely {4, B, A’, B'}?

Proposed by Gabe Levin
Solution. Good luck!

[19] Let the multivariable polynomial P, (z,y) be defined by
Pn(l'a y) = Z xiyn—i
i=0

for all n. Compute the number of ordered pairs of complex numbers (x,y) for which Piy(z + 1,y +4) =
P23($+2ay+3) =0.
Proposed by Corwin Eisenbeiss

Solution. Notice that if we divide P,(z,y) by y" (y = 0 means x = 0, which we will see is always a
solution), we get a polynomial in terms of % In particular,

Pn;i,y) _ <z>n+ <;j)n1 Tt (;) +1,
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meaning P,(z,y) = 0 really means %

example Piy(z + 1,y +4) = 0 tells us Z—ﬂl = w for w # 1 as a 15th root of unity and Pas(z + 2,y +3) =0
42

tells us Vs = ¢ for ( # 1 as a 24th root of unity. Although these are complex numbers, the first set of
equations is 14 (complex) lines through (—1, —4) and the second set of equations is 23 lines through (-2, —3).
Intuitively, any pair of these lines should give an intersection so long as they are not “parallel” which would
give an answer of 14 - 23, so our main claim will be to show this intuition is largely true. Of course, this

statement generalizes past these numbers, but for convenience we will use the given numbers.

= w where w is an n + 1th root of unity not equal to 1. Then for

Note the first equation implies (z +1) = (y +4)w = z=yw+4dw —1and (z+2) = (y+3)( =
x = y( + 3¢ — 2. If there is no solution, then yw — 4w — 1 = y{ 4+ 3¢ — 2 has no solution, but rearranging
this will give the solution y = 347?&, so indeed, as long as w # (, we have exactly 1 intersection. Note

that w = ¢ will happen at all numbers that are both 15th roots of unity and 24th roots of unity. There are
ged(15,24) = 3 of these, but 1 is the number 1 so we only need to remove 2 cases here.

Furthermore, each point is the intersection of at most 2 lines except potentially the points (—1,—4)
and (—2,—3). This is because if three distinct lines intersect at a point, two lines share either (—1,—4) or
(—2,—3) and that common point and are thus not distinct. Of course, if this common point is exactly one
of the two, these lines actually only share one point, so we need to keep note of if (—2,—3) is a solution to

;T*'i =w =— w=—1orif (—1,—4) is a solution to % = (¢ = ( = —1. Notice that w is a 15th root of
unity so w = —1 is impossible, but ( is a 24th root of unity so { = —1 actually is possible. This means this

line will intersect the 14 lines at 1 point, causing us to have 13 less intersections than expected.

Summing it all up, there are 14-23 —2 — 13 = ordered pairs.

[20] Let ABCD be a cyclic quadrilateral with AD and BC meeting at T, AC and BD meeting at P, and
AB and CD meeting at a 60° angle. Point M # P is the intersection of the circumcircles of APAB and

APCD and V is the reflection of M over C'D. Given that é—g = % and MV = 224, compute TV.

Proposed by Corwin Eisenbeiss

Solution. Good luck!

[20] For primes p, let f(p) be the number of ordered pairs (a,b) of integers such that 0 < a,b < p and p
divides a® — 10a3b? + 10a%b3 — v® — 1 and 5a*b — 10a3b? + 5ab* — b°. Let S,, be the set of the first n primes.
Compute

1 )
Jom 7 2 10"
PESn

Proposed by Tanvir Ahmed

Solution. Let w be a primitive 3rd root of unity, so w? 4+ w + 1 = 0, which means w? = —1 — w. Also, let
P(a,b) = a® — 10a3b? + 10a?b® — b> and Q(a,b) = 5a*b — 10a®b + 5ab* — b°. The main observation is the
following:

(a +bw)® = a® + 5a*bw + 10a>b*w? + 10a%b? + Sabtw + b°w?
= (a® — 10a3V? + 10a®b® — b°) + (5a*b — 10a®b + 5ab* — b)w
= P(a,b) + Q(a, b)w,

and we see the polynomials given in the problem pop out. Also notice that for all the pairs that are counted
by f(p), a,b € {0,1,...,p — 1}, and this set covers all residues mod p exactly once. Thus, we can think
about f(p) as counting pairs in ]F}%. Also notice that the conditions given for pairs counted by f(p) are just
P(a,b) =1 (mod p) and Q(a,b) =0 (mod p).

For the first case, suppose that w € F,, meaning there is a primitive 3rd root of unity mod p. This is
equivalent to p = 1 (mod 3). In this case, (a + bw)? = 1 in F,. However, w? is also a primitive 3rd root of
unity, so by the same reasoning, we can arrive at (a + bw?)® = 1. If p = 1 (mod 5), then there are 5 5th



roots of unity mod p, so there are 5 choices for a + bw and 5 for a + bw?. For each of the 25 combinations
of choices, we can solve a system of equations to get unique values for a and b. If we have a pair (a,b) such
that a + bw and a + bw? are 5th roots, we can also expand out their 5th powers to get P(a,b) + Q(a,b)w = 0
(mod p) and P(a,b) + Q(a,b)w? =1 (mod p). Taking suitable linear combinations will produce P(a,b) = 1
(mod p) and Q(a,b) =0 (mod p). In other words, if p=1 (mod 3) and p =1 (mod 5), f(p) = 25.

In the case where p =1 (mod 3) and p # 1 (mod 5), we still need a + bw and a + bw? (both elements of F,)

to be 5th roots, but 1 is the only 5th root. Thus, in this case f(p) = 1, corresponding to the ordered pair
(a,b) = (1,0).

In the case where p = 2 (mod 3), w ¢ ), so we consider the field extension F,[w] = 2. Once again, we
need to count the solutions to (a + bw)® = 1 or a + bw being a 5th root of unity where a,b € F,. However,
Fp[w] is a vector space over F), with basis {1,w}. Therefore, if we have a + bw = ¢ for some 5th root ¢ € F 2,
there is exactly one solution for (a,b). Therefore, in this case, f(p) is just the number of 5th roots of unity
in F2. Since IF;Z, the multiplicative group of Iz, is cyclic of order p? — 1, there are 5 5th roots of unity if
5| p? — 1 and 1 root otherwise. Thus, f(p) =5 if p=1,4 (mod 5) and f(p) =1 if p=2,3 (mod 5).

Now we summarize our findings. For primes p > 5, the value of f(p) only depends on p mod 15. We can use
the Chinese Remainder Theorem and all the cases we got earlier to write the following:

25 p=1 (mod 15)
flp)=4¢5 p=11,14 (mod 15)
1 p=2,4,7,8,13 (mod 15)

For the final computation, for integers a with ged(a,15) = 1, let m,(n) be the number of elements of S,
(which are primes) that are congruent to a mod 15. By Dirichlet’s Theorem, we have

or in other words, m4(n) ~ §. Thus, we have

1 1
HZf(P)2N;-%(252+52+52+12+12+12+12+12)
PESn
_ 680
8
— 85

where we obtained this by summing over primes congruent to each of the coprime residues mod 15. The
above calculation is just another way of saying

Solution. This solution is functionally the same as the previous, but is phrased more directly in terms
of algebraic number theory. We use the same notation introduced in the previous solution and start from
(a + bw)® = P(a,b) + Q(a,b)w. In this solution, the ring Z[w] will play a crucial role.

If (a,b) is a pair counted by f(p), we know P(a,b) =1 (mod p) and Q(a,b) =1 (mod p). This means that

(a+bw)® =1 (mod p), with respect to the ring Z[w]. In other words, in the quotient Z[w]/(p), (a+bw)> = 1,
where (p) denotes the ideal generated by p. Now we have some cases.

If p =1 (mod 3), p is not prime in Z[w], and there exist primes mj, 7y € Z[w] such that p = w7y and
N(m) = N(mz) = p. Thus, Z[w]/(p) = Zw]/(m1) x Zw]/(72) = F2 by the Chinese Remainder Theorem.
Now we need to find the number of elements of IFI% whose 5th power is 1. Such an element can only come
about by combining two elements of F), whose 5th power is 1. If p =1 (mod 5), there are 5 5th roots of unity



in F,, so there are 25 solutions to 2° = 1 in IFIQ,, meaning f(p) = 25 for this case. If p =1 (mod 5) though,
there is only 1 5th root of unity in IF,, and consequently only one solution in IFIQ, as well. Thus, f(p) =1 for
p=1 (mod 3) and p # 1 (mod 5).

If p =2 (mod 3), then p is prime in Z[w] and Z[w]/(p) forms a field of order N(p) = p?, which is just Fz.
There are 5 primitive 5th roots of unity here if and only if 5 | p?> — 1, so f(p) = 5 if p = 2 (mod 3) and
p=1,4 (mod 5). Otherwise, if p =2 (mod 3) and p = 2,3 (mod 5), then f(p) = 1. The computation step
with Dirichlet’s Theorem proceeds as in the previous solution.



