
1. [6] Quincy writes the numbers 1, 3, 4, 8, and 9 on a chalkboard. Every minute, he replaces two numbers
m and n on the chalkboard with 5m+ n. Compute the maximum possible value of the final number on the
chalkboard.

Proposed by Gabe Levin

Solution. Note that we are just expressing a permutation of the given numbers as a “base-5” numeral,
without the restriction that digits are less than 5. Thus we want the digits to be in decreasing order, so the
answer is 9 · 54 + 8 · 53 + 4 · 52 + 3 · 5 + 1 = 6741 .

2. [6] Compute the number of positive integers n < 50 such that both n and 50 − n have an even number of
divisors.

Proposed by Gabe Levin

Solution. We are just counting the number of positive integers n such that n and 50 − n are both not
squares, so we use complementary counting. For any perfect square less than 50, we can choose to put it in
the first coordinate of the pair or the second, giving 14 pairs. However, the pairs (1, 49), (49, 1), and (25, 25)
are counted twice, so there are only 11 pairs. Thus, the answer is 49− 11 = 38 .

3. [7] Percy rolls eight fair six-sided dice and records their values a, b, c, d, e, f , g, and h. If P is the probability
that

(a+ b)c+d(e+ f)g+h = 2025,

and P = paqbrc where p, q, r are distinct primes and a, b, c are nonzero integers, compute pa+ qb+ rc.

Proposed by Tanvir Ahmed

Solution. We can either express 2025 as 9252 or as 3452. Suppose e+ f = 5 and g + h = 2. Then, we have
4 choices for (e, f) and 1 choice for (g, h), so 4 choices for (e, f, g, h). If a + b = 9 and c + d = 2, then we
have a total of 4 choices for (a, b, c, d), while if a + b = 3 and c + d = 4, we have 2 choices for (a, b) and 3
for (c, d), for a total of 6 for (a, b, c, d). We may also swap (a, b, c, d) and (e, f, g, h), so there are a total of
2 · 4 · (4 + 6) = 80 valid octuples. Thus, P = 80/68 = 512−43−8, for an answer of 5− 8− 24 = −27 .

4. [7] Let ABCDE be a pentagon and suppose AB ∥ CD and BC ∥ DE. Compute the area of this pentagon
given that AB = BC = 15, CD = 21, DE = 5, and EA = 8.

Proposed by Gabe Levin

Solution. Extend DE and AB to meet at X so that XBCD is a parallelogram:



A

B

C

D

E

X

6

15

15

21

5

10

8

Observe that XAE is a right triangle with side lengths 6, 8, and 10. Thus EA is 2/3 the height of the
parallelogram, so that [XBCD] = 12 · 21 = 252. The area of XAE is 24, so [ABCDE] = 252− 24 = 228 .

5. [8] Let x = 12523 − 12483. Compute
√
x− 16.

Proposed by Gabe Levin

Solution. If t = 1250, then we are computing
√
(t+ 2)3 − (t− 2)3 − 16 =

√
12t2 + 16− 16 = 2t

√
3 =

2500
√
3 .

6. [8] Compute ∑
m|1024

∑
n|1024

⌊m
n

⌋
.

Proposed by Gabe Levin

Solution. Note that for each k, ⌊mn ⌋ = 2k whenever n = 2r and m = 2k+r, so that there are 11− k choices
for m and n. Thus we are computing

S =

10∑
k=0

2k(11− k).

Then

S = 2S − S =

11∑
k=1

2k(12− k)−
10∑
k=0

2k(11− k) = 211 − 11 +

10∑
k=1

2k,

which evaluates to 2 · 211 − 13 = 4083 .



7. [9] Let ABC be a triangle with AB = 1, BC =
√
3, and CA = 2. Let O be the circumcircle of ABC and

let ℓ be the tangent to O parallel to AC and closer to B. Suppose ℓ intersects O at P . Compute the area of
triangle OPB.

Proposed by Gabe Levin

Solution. Shown below is a diagram:

A

B

C

P

O

ℓ

Notice that ABC is a 30-60-90 right triangle, so △ABO is equilateral, and thus ∠AOB = 60◦, Furthermore,
since AC is a diameter of the circle, we must have that PO ⊥ BC, so ∠COP = 90◦. Thus, ∠BOP = 30◦,

so [OPB] = 1
2 · 1 · 1 · sin 30◦ = 1

4
.

8. [9] Call a set S ⊂ {1, 2, . . . , 2025} corwizzy if for any a, b ∈ S with ab ≤ 2025, ab ∈ S. Compute the smallest
positive intege r n > 1 such that there exists a corwizzy set S whose elements sum to n.

Proposed by Gabe Levin

Solution. Note that any corwizzy set S has an element greater than 45, as otherwise we have (maxS)2 ∈ S,
a contradiction (since n > 1). Thus the answer is at least 46 , and clearly {46} is corwizzy.

9. [10] Let O be a circle and XY = 8 be a diameter of O. Let A lie on O and let the circle with center X and
radius XA intersect O at B ̸= A. Compute the maximum possible area of triangle ABY .

Proposed by Gabe Levin

Solution. Clearly, AXBY forms a kite, so B is just the reflection of A over XY . Let Z be the foot of the
altitude from A to XY , and let x = ZY .



A

B

X Y
Z

Thus, XZ = 8− x. Since AXY and AZ is the altitude to the hypotenuse, AZ =
√
XZ · Y Z =

√
x(8− x).

We are trying to maximize [ABY ] = AZ · Y Z = x
√
x(8− x). It suffices to maximize the square of this

quantity instead, which is x3(8− x). It suffices to maximize 1
27 times this quantity, which is

x3(8− x)

27
=
(x
3

)3
(8− x) ≤

(
3 · x

3 + 8− x

4

)4

= 16

by AM-GM, with equality when x
3 = 8 − x. This implies that x = 6 is optimal, in which case [ABY ] =

6
√
6 · 2 = 12

√
3 .

10. [Up to 10] Submit an ordered quadruple of integers (a, b, c, d) with 0 ≤ a, b, c, d ≤ 50. Let R be the axis-
aligned rectangle who’s bottom left vertex has coordinates (a, b) and who’s upper right vertex has coordinates
(c, d). If R coincides with another teams rectangle or if R has non-zero intersection with another teams

rectangle and neither contain each other, you get 0 points. Otherwise, you get |b−a||d−c|
250 points.

Proposed by Lucas Pavlov



11. [11] Given a circular mirror, at how many angles strictly above the horizontal from the south pole can a
laser be shot such that it bounces at most 20 times before returning?

Proposed by Lucas Pavlov

Solution. Here is an example of the ball bouncing 4 times and returning.

We first consider the number for the laser to bounce exactly n times before returning. Let θ be the angle of
the arc formed by the south pole and the point at which the laser is shot in radians. Then, including the
spot at which the laser is shot at, the laser will divide the circle into n+1 equally sized arcs. Thus, (n+1)θ
must be a multiple of 2π, but kθ can’t be a multiple of 2π for any k ≤ n+ 1. Therefore, θ = 2πj

n+1 for some
positive integer j ≤ n, and the other condition is equivalent to gcd(j, n) = 1 because otherwise, we could
reduce this fraction. Thus, there are φ(n+ 1) ways to bounce the laser such that it returns after exactly n
bounces. The final answer is thus

21∑
n=2

φ(n) = 139 .

12. [11] What is the largest positive integer k such that there exist k consecutive four-digit positive integers,
each with no more than 3 distinct digits?

Proposed by Gabe Levin

Solution. Clearly the set {9877, 9878, . . . , 9999}, with size 123 , is such a set of integers, as the largest four-
digit integer with four distinct digits is 9876. To show maximality, observe that, if a set contains elements
with different first digits, say n and n + 1, the minimal element of the set is at least n976 (unless n = 9,
in which case n + 1 = 10, which is too large). The maximal element of the set is (n+ 1)013, for a set size
clearly less than 123. Thus any such set has all elements starting with the same digit, say n. Clearly, then,
it is optimal for the set to contain all integers of the form nnxy. If n ̸= 9, then the set cannot contain both
of n(n− 1)98 and n(n− 1)96, as it only contains the former if n = 8. Moreover, the set cannot contain both
of n(n+ 1)01 and n(n+ 1)03, as it only contains the former if n = 1. Thus the maximum length of the set
is 108. If n = 9, we can clearly see that the set cannot contain 9876, so the set listed above is the largest
such set.

13. [12] An 8 × 9 grid is filled with the 72 divisors of 36000, randomly and without replacement. CrussoCode
randomly and uniformly picks one of the squares, and computes its prime factorization along with the prime
factorizations of its neighbors (only lateral neighbors, not diagonal). What is the probability that each such
prime factorization has pairwise distinct exponents for each prime factor of 36000?

(For example, 2333 and 2432 have pairwise distinct exponents as 3 ̸= 4 and 3 ̸= 2, but 2432 and 2332 do not,
as 2 = 2.)

Proposed by Gabe Levin

Solution. Note that 36000 = 253253. For any chosen square that is not a corner, the set containing the
square and its neighbors has at least four elements. However, there are only three possible exponents for
the prime 3. Thus the square must be a corner. We then count the number of possible sets of exponents for
each of the three prime factors, which are 6 · 5 · 4, 3 · 2 · 1, and 4 · 3 · 2. Thus, the answer is

4

72
· (6 · 5 · 4)(3 · 2 · 1)(4 · 3 · 2)

72 · 71 · 70
=

4

1491
.



14. [12] For how many ordered triples of integers (a, b, c) satisfying 0 ≤ a, b, c ≤ 20 do there exist integers
(x, y, z) ̸= (0, 0, 0) satisfying

ax = by + cz

bx = cy + az

cx = ay + bz?

Proposed by Gabe Levin

Solution. Adding the equations, we see (a+b+c)x = (a+b+c)(y+z). If (a, b, c) ̸= (0, 0, 0), then x = y+z.
Thus we have ay + az = by + cz and by + bz = cy + az. Thus, (a− b)y = (c− a)z and (b− c)y = (a− b)z.
WLOG a ≤ b ≤ c. Then we have (a − b)2y = (c − a)(a − b)z = (c − a)(b − c)y. Looking at signs, we see
(a− b)2 is nonnegative, while (c− a)(b− c) is nonpositive, so that a = b = c, giving 21 solutions. (If y = 0,
we have bc = a2, again implying a = b = c.)

Solution. We can rewrite this system of equations as

ax− by − cz = 0

bx− cy − az = 0

cx− ay − bz = 0.

(0, 0, 0) is always a solution to this system, so for there to be any other solutions, the determinant of the
coefficient matrix must be 0. Notice that∣∣∣∣∣∣

a −b −c
b −c −a
c −a −b

∣∣∣∣∣∣ = 3abc− a3 − b3 − c3 = −(a+ b+ c)(a2 + b2 + c2 − ab− ac− bc).

Thus, a+ b+ c = 0 or a2 + b2 + c2 = ab+ ac+ bc. The first case corresponds to (a, b, c) = (0, 0, 0), and note
that by weighted AM-GM (in particular, adding up the inequality a2 + b2 ≥ 2ab cyclically) or Muirhead’s
inequality, the second case only holds if a = b = c. Either way, there are nonzero solutions exist if and only
if a = b = c, and we get an answer of 21 as in the previous solution.

15. [13] Let ABC be a triangle with AB = 13, BC = 14, and CA = 15. Let X be the foot of A onto BC and
let D and E be the feet of X onto AB and CA respectively. Compute DE.

Proposed by Gabe Levin

Solution. Here is a diagram:

A

B C
X

D

E



Note that ADXE is cyclic with diameter AX as it contains two opposite right angles. The radius of this
circumcircle is 1

2AX. [ABC] is well known to be 84 for a 13-14-15 triangle, so AX = 2 · 84
14 = 12, and thus

the radius of the circle is 6. In a similar fashion, we can find that the altitude from B to AC is 168
15 , so

sinA =
168/15

AB
=

168

13 · 15
.

Finally, by the Law of Sines,

DE = 2R sinA = 12 · 168

13 · 15
=

672

65
.

16. [13] Let an, bn be sequences with a1 = 6, b1 = 7 and

an+1 = bn
2 + anbn

bn+1 = an
2 + anbn

for all n ≥ 1. Compute the number of divisors of a10.

Proposed by Corwin Eisenbeiss

Solution. Let xn = an + bn and yn = an − bn for all n. Adding and subtracting the given equations yields

an+1 + bn+1 = an
2 + 2anbn + bn

2

an+1 − bn+1 = bn
2 − an

2

which in the context of our new sequences means

xn+1 = xn
2

yn+1 = −xnyn.

Since x1 = a1 + b1 = 13, xn = 132
n−1

so x10 = 132
9
= 13 · 1329−1. Moreover, y1 = −1, so y10 is positive,

meaning y10 = x9x8 · · ·x10 = 132
8+27+···+20 = 132

9−1. Moreover, a10 = x10+y10
2 = 7 · 1329−1 = 71 · 13511 so

a10 has (1 + 1)(511 + 1) = 1024 divisors.

17. [14] Mario starts at (0, 0, 0) and is trying to reach Peach’s CASTLE at (41, 6, 7). Every time he moves,
Mario can do one of the following:

(i) Move +2 units in the x direction

(ii) Choose two of the x, y, z-directions and move +1 units in both of them

Let N be the number of distinct paths that Mario can take to Peach’s CASTLE. Find the sum of the distinct
prime factors of N .

Proposed by Steven Breger

Solution. Every move must increase the sum of Mario’s coordinates by 2, so Mario will make 41+6+7
2 = 27

moves in total. We can first choose 6 moves in which Mario will move in the y direction and then 7 moves
in which he will move in the z direction. The moves that we choose for the y and z directions may overlap.
Then, For all moves that don’t have 2 directions already determined, we make Mario move in the x direction.
Thus, N =

(
27
6

)(
27
7

)
= 24 · 36 · 5 · 112 · 132 · 23, which gives an answer of 2 + 3 + 5 + 11 + 13 + 23 = 57 .

Solution. We construct a three-variable generating function to represent Mario’s movement. In particular,
we consider (x2 + xy + xz + yz)27. Each term of x2 + xy + xz + yz represents one of the possible moves
Mario can make, and we raise it to the 27th power since Mario makes 27 moves. Note that this factors as

(x+ y)27(x+ z)27.

We want to find the coefficient of x41y6z7. This term can only be attained by multiplying the y6 term
from (x+ y)27 and the z7 term from (x+ z)27. By the binomial theorem, the product of the corresponding
coefficients is

(
27
6

)(
27
7

)
, and we get the same answer as in the previous solution.



18. [14] Let f be a function such that f(pk) = pk+pk−1 for prime p and positive integer k and f(ab) = f(a)f(b)

for all relatively prime integers a, b. Find the sum of all possible distinct values of f(2024x)
2024f(x) for integer x.

Proposed by Corwin Eisenbeiss

Solution. Note 2024 = 452 − 12 = 44 · 46 = 23 · 11 · 23. As such, let x = mn such that all the factors of 2,
11, and 23 are in m so m and n are coprime and similarly 2024m and n are coprime. It follows that

f(2024x) = f(2024mn) = f(2024m)f(n)

and similarly

2024f(x) = 2024f(mn) = 2024f(m)f(n)

so we have
f(2024x)

2024f(x)
=
f(2024m)f(n)

2024f(m)f(n)
=
f(2024m)

2024f(m)
.

If m = 2a · 11b · 23c, this expression becomes

f(2024m)

2024f(m)
=

f(2a+3 · 11b+1 · 23c+1)

23 · 111 · 231 · f(2a · 11b · 23c)
=

f(2a+3)

23 · f(2a)
· f(11b+1)

111 · f(11b)
· f(23c+1)

231 · f(23c)
.

Note that f(pk) = pk + pk−1 = pk
(
1 + 1

p

)
holds for k ≥ 0 (possible exponents) unless k = 0 where it is 1.

Thus if d ≥ 0,

f(pk+d)

pd · f(pk)
=

pk+d(1 + 1
p)

pd · pk(1 + 1
p)

= 1

unless k = 0 whence f(pk) = 1 and the fraction is f(pd)
pd

= 1 + 1
p . Thus, depending on whether m has the

prime or not, each f(pk+d)
pdf(pk)

is either 1 or 1+ 1
p . Each possible value made by combining these is distinct as the

denominator is not divisible by p if 1 is picked and it is if 1 + 1
p is picked. As such, we may simply evaluate

(
1 + 1 +

1

2

)(
1 + 1 +

1

11

)(
1 + 1 +

1

23

)
=

(
5

2

)(
23

11

)(
47

23

)
=

235

22
.

19. [15] Let triangle ABC have AB = 5, BC = 6, and CA = 7 and P be a point in the plane. If X, Y , Z are
the feet of the altitudes from P to AB, BC, and CA, find the minimum possible value of PX2+PY 2+PZ2

across all P .

Proposed by Corwin Eisenbeiss

Solution. A diagram is shown below.

A

B C

P

X

Y

Z



The key observation is that PX ·BC = 2[PBC] and analogously PY ·CA = 2[PCA] and PZ ·AB = 2[PAB].
Summing these, we get

PX ·BC + PY · CA+ PZ ·AB = 2[PBC] + 2[PCA] + 2[PAB] ≥ 2[ABC]

where the last is really an inequality because P may lie outside the triangle. By the Cauchy-Schwarz
inequality, we deduce

(PX2 + PY 2 + PZ2)(BC2 + CA2 +AB2) ≥ (PX ·BC + PY · CA+ PZ ·AB)2 ≥ (2[ABC])2 ≥ 4[ABC]2

with equality if and only if PX = λBC, PY = λCA, PZ = λAB for some real λ. We may calculate

BC2 + CA2 +AB2 = 62 + 72 + 52 = 110

This means

PX2 + PY 2 + PZ2 ≥ 4[ABC]2

BC2 + CA2 +AB2
.

The semiperimeter is s = 9, so by Heron’s formula

[ABC]2 = 9(9− 5)(9− 6)(9− 7) = 9 · 4 · 3 · 2 = 216.

Substituting, this means the minimum is 4·216
110 =

432

55
.

To see that equality may hold, we in essence need to find a point P for which PX : PY : PZ = BC :
CA : AB = 6 : 7 : 5 or in other words a point P for which [PBC] : [PCA] : [PAB] = 36 : 49 : 25. If we take
the point C ′ on AB for which P = C ′ causes [PBC] : [PCA] = 36 : 49, then for all P on CC ′, the heights
of △CPA and △CC ′A are the same and similarly for △CPB and △CC ′B so [PBC] : [PCA] = 36 : 49,
meaning all points on a cevian of the triangle through C satisfy [PBC] : [PCA] = 36 : 49. There is similarly
a cevian of the triangle through A, all points on which satisfy [PCA] : [PAB] = 49 : 25, and so their
intersection gives our desired minimum.

20. [Up to 28] Welcome to USAYNO!

Instructions: Submit a string of 6 letters corresponding to each statement: put Y if you think the statement
is true, N if you think it is false, and X if you do not wish to answer. You will receive (n+1)(n+2)

2 points for
n correct answers, but you will receive zero points if any of the questions you choose to answer are incorrect.
Note that this means if you submit “XXXXXX” you will get one point.

(a) Let ABC be a triangle and A′ be the reflection of A over BC. Define B′ and C ′ analogously. It is
possible for triangle ABC to be strictly inside of triangle A′B′C ′.

Proposed by Lucas Pavlov

(b) Given triangle ABC, there always exists a point P in the same plane such that PA : PB : PC = 41 :
67 : 69.

Proposed by Steven Breger

(c) Put an infinite, axis-aligned grid on the coordinate plane. Let a phone be a contiguous path of squares
of the grid (that is, no 2× 2 set of squares is completely on the path). Call a phone new if it is possible
to get from one end of the phone to the other while staying on the squares of the phone and only moving
up or to the right. Any new phone can tile the grid.

Proposed by Lucas Pavlov

(d) Let f(x) = ax+b
cx+d and g(x) = px+q

rx+s be functions with real coefficients on the reals such that f(f(x)) and
g(g(x)) are not the identity. Suppose f(g(x)) = g(f(x)) for all x. Then f(x)− x and g(x)− x have the
same roots.

Proposed by Gabe Levin



(e) The function f : R → R is defined by

f(x) = sin6
(
x− 3π

8

)
+ sin6

(
x− π

8

)
+ sin6

(
x+

π

8

)
+ sin6

(
x+

3π

8

)
.

For any x ∈ R, there exists some y ∈ R such that 0 < |x− y| < π
8 and f(x) = f(y).

Proposed by Gabe Levin

(f) For all positive integers n > 1 and k < n, gcd(
(
n
k

)
, n) > 1.

Proposed by Gabe Levin

Solution. NNYNY Y .

(a) The claim is False . We claim that A′B′ intersects AC and BC if and only if ∠C ≤ 60◦. Here is a
diagram:

A

B C

A′

B′

Notice that A′B′ intersects AC and BC if and only if the angle ∠A′CB′ (particularly the side of the
angle that contains segment AB) is less than or equal to 180◦. However, this angle is just ∠A′CB +
∠BCA+ ∠ACB′ = 3∠C, so this condition is equivalent to ∠C ≤ 60◦. △ABC must have an angle less
than or equal to 60◦, so at least one of the sides of A′B′C ′ intersect ABC, which means it can’t be
contained strictly inside ABC.

(b) The claim is False . Define S = {P | PA : PB = 41 : 67} and define T = {P | PA : PC = 41 : 69}.
Note that for some point P , if P ∈ S and P ∈ T , then PA : PB : PC = 41 : 67 : 69. We are thus left to
prove that S ∩ T can be empty for some ABC.

Let F , F ′ be the two points on line AB that divide AB into a ratio of 41 : 67. Let E and E′ be the two
points on line AC that divide AC into a ratio of 41 : 69. Let ωF be the circle with diameter FF ′ and



let ωE be the circle with diameter EE′. Let X be a point on ωF and Y be a point on ωE . Then, by
the angle bisector theorem, ωF is the Apollonian circle of △ABX while ωE is the Apollonian circle of
△ACY . Thus, S = ωF and T = ωE . All that is left to do is to construct ABC such that ωF and ωE do
not intersect.

Imagine fixing segment AB and moving point C far to the side. ωF would not change or move while
ωE would grow large leaving ωF contained completely inside it. This is pictured in the diagram below.
There are, in fact, many ABC where these circles do not intersect.

A

B
C

F

F ′

E

E′
ωF

ωE

(c) The claim is True . By taking a new phone, copying it, and moving it up one square up and one square
left or one square right and one square down, we can create diagonal strips of squares in the plane. For
example, suppose we have the following new phone:

We can tile this new phone to form diagonal strips as follows:



. . .

. . .

These diagonal strips can be tiled together to cover the entire plane.

(d) The claim is False . Let f(x) = x−2
x+4 and let g(x) = −1. Then g(f(x)) = −1 and f(g(x)) = f(−1) =

−3
3 = −1. Thus f(g(x)) = g(f(x)). Moreover, g(g(2)) = −1 ̸= 2 and f(f(2)) = f(0) = −1

2 , so that f2

and g2 are not the identity. However, f(x)− x has roots −1 and −2, while g(x) only has a root at −1.

The claim is true, however, if we add the additional constraint that f and g are nonconstant. We
leave the proof as an exercise.

(e) The claim is True . We prove the stronger claim that f is constant. We redefine f by shifting down π
8

to give an easier formulation of

f(x) = cos6(x) + sin6
(
x− π

4

)
+ sin6(x) + sin6

(
x+

π

4

)
.

If we let s = sinx and t = cosx, note that sin
(
x− π

4

)
= 1√

2
(s− t) while sin

(
x+ π

4

)
= 1√

2
(s+ t). Thus

f(x) = s6 + t6 +
1

8

(
(s− t)6 + (s+ t)6)

)
=

1

8

(
(s− t)6 + 8(s6 + t6) + (s+ t)6

)
=

1

8

(
10s6 + 30s4t2 + 30s2t4 + 10t6

)
=

5

4
(s2 + t2)3 =

5

4
,

as desired.

(f) The claim is True . Let p | n and v = νp(n) and suppose p ∤
(
n
k

)
for some k. By Lucas’ theorem,(

n

k

)
≡
∏
i

(
ni
ki

)
̸≡ 0 (mod p),

where ni and ki are the ith digits in the base p representations of n and k respectively. Then note that
nv−1 = nv−2 = · · · = n0 = 0. Thus kv−1 = kv−2 = · · · = k0 = 0, so that pv | k. Thus if gcd

(
n,
(
n
k

))
= 1,

pνp(n) | k for each p | n. Thus n | k, as desired.

21. [16] For positive integers n and k, let ψk(n) be the smallest positive integer such that nψk(n) is a perfect
kth power. Call a positive integer n psichotic if there exists a square-free positive integer N such that

n =
∑

d|N104

φ(ψ3(d))φ(ψ5(d))φ(ψ7(d)).



Find the number of positive integers n ≤ 20256 that are psichotic (recall that for positive integers n, φ(n) is
the number of integers relatively prime to n between 1 and n inclusive).

Proposed by Tanvir Ahmed

Solution. Let
f(N) =

∑
d|N104

φ(ψ3(d))φ(ψ5(d))φ(ψ7(d)).

We first evaluate f(p) for primes p. The sum ranges over all divisors d = pk of p104. Since 0 ≤ k < 105, k
can also be uniquely described by its residue mod 3, 5, and 7 by the Chinese Remainder Theorem. If k ≡ −a
(mod 3), k ≡ −b (mod 5), and k ≡ −c (mod 7), where 0 ≤ a < 3, 0 ≤ b < 5, and 0 ≤ c < 7 then ψ3(k) = pa,
ψ5(k) = pb, and ψ7(k) = pc. Thus,

f(p) =

∑
d|N2

φ(ψ3(d))

∑
d|N4

φ(ψ5(d))

∑
d|N6

φ(ψ7(d))


= (φ(1) + φ(p) + φ(p2))(φ(1) + · · ·+ φ(p4))(φ(1) + · · ·+ φ(p6))

since after expanding the parentheses, the term corresponding to every divisor of p104 is counted exactly
once, by our CRT argument. Note that the above product gives us f(p) = p2 · p4 · p6 = p12.

Now we prove that f is multiplicative. First of all, ψk is clearly multiplicative since it acts on each distinct
prime divisor of a number independently, and for gcd(m,n) = 1, all prime factors of ψk(m) are prime factors
of m and analogously for ψk(n), so gcd(ψk(m), ψk(n)) = 1. Therefore, since φ is multiplicative,

φ(ψk(mn)) = φ(ψk(m)ψk(n)) = φ(ψk(m))φ(ψk(n)),

so φ(ψk(N)) is multiplicative. Thus, φ(ψ3(N))φ(ψ5(N))φ(ψ7(N)) is also multiplicative. f(N) is just the
sum of this function over all divisors of N104, which is also multiplicative. Thus, for all square-free N ,
f(N) = N12. The problem thus reduces to counting the number of square-free positive integers whose 12th
power is less than or equal to 20256, which is equivalent to counting the number of square-free positive
integers less than or equal to

12
√
20256 = 45. It is relatively easy to count that there are 29 such integers.

22. [16] Compute the maximum value of

f(x) =
x2 + x− 2

x4 + 2x3 − x2 − 2x+ 3

as x ranges over R.
Proposed by Gabe Levin

Solution. Let y = x2 + x. Then

f(x) =
y − 2

y2 − 2y + 3
=

(
y +

3

y − 2

)−1

=

(
2 + (y − 2) +

3

y − 2

)−1

.

By AM-GM we have
∣∣∣(y − 2) + 3

y−2

∣∣∣ ≥ 2
√
3. If y − 2 is negative, we then achieve a maximum value of

(2− 2
√
3)−1 < 0, whereas if y − 2 is positive, we achieve a maximum value of (2 + 2

√
3)−1 =

√
3− 1

4
.

23. [17] Aditya tags each point (a, b) where a and b are integers with the number a2 + b2. Andrew starts at
(0, 0) and every minute, he walks either up 1 unit or right 1 unit with equal probability. After 22 minutes,
Megan sums the tagged numbers on each point of Andrew’s walk. What is the expected value of this sum?

Proposed by Corwin Eisenbeiss and Steven Breger



Solution. Let xt be the number Aditya tagged at Andrew’s position, t minutes after Andrew began walking.
Then define yi = xi − xi−1 for i = 1, . . . , 22. The key idea is to think about the xi in terms of the yi. We
want to find E(x1 + x2 + · · · + x22) (since x0 = 0) and so rewriting this using linearity of expectation, we
want

E(x1) + E(x2) + · · ·+ E(x22) =
22∑
k=1

E(xk).

Notice that x0 = 0, so

x1 = y1

x2 = y1 + y2

x3 = y1 + y2 + y3
...

x22 = y1 + y2 + y3 + · · ·+ y22

which means after applying linearity of expectation

xk = E

(
k∑

n=1

yn

)
=

k∑
n=1

E(yn).

Suppose Andrew is at (a, b) n− 1 minutes after he begins walking. Then xn−1 = a2+ b2 and he has an equal
probability to move to (a+ 1, b) and (a, b+ 1), meaning the expected value of xn is

1

2
((a+ 1)2 + b2) +

1

2
(a2 + (b+ 1)2) =

1

2
(2a2 + 2a+ 1 + 2b2 + 2b+ 1)

= a2 + b2 + a+ b+ 1.

Furthermore, n − 1 = a + b because each move Andrew either increases his x-coordinate by 1 or his y-
coordinate by 1. We deduce n = a+ b+ 1 and so

E(yn) = E(xn − xn−1)

= E(xn)− E(xn−1)

= a2 + b2 + a+ b+ 1− (a2 + b2)

= a+ b+ 1

= n.

Applying our formula for xk, this means

xk =

k∑
n=1

E(yn) =
k∑

n=1

n =

k∑
n=1

(
n

1

)
=

(
k + 1

2

)
by the Hockey Stick identity. Then, evaluating the expected value gives

22∑
k=1

E(xk) =
22∑
k=1

(
k + 1

2

)
=

23∑
k=2

(
k

2

)
=

(
24

3

)

again by the Hockey Stick identity, giving
(
24
3

)
= 2024 as the answer.

24. [17] How many ordered pairs of positive integers (a, b) with a > b and a+ b < 1000 have an integer solution
x to √

a− x+ (b+ x) = (a− x)−
√
b+ x?

Proposed by Gabe Levin



Solution. We rearrange to get √
a− x+

√
b+ x = a− b− 2x.

Thus we see that √
a− x−

√
b+ x = 1.

Letting t = a+b
2 and u = a−b

2 − x, we have
√
t+ u +

√
t− u = 2u and

√
t+ u −

√
t− u = 1. Thus√

t+ u = (2u+ 1)/2, so that

t+ u = u2 + u+
1

4
,

and thus
1

2
(a− b− 2x) = u =

√
t− 1

4
=

1

2

√
2a+ 2b− 1.

Thus

x =
1

2

(
a− b−

√
2a+ 2b− 1

)
.

Thus we just need a > b, a − b odd, and 2a + 2b − 1 a square. Let 2a + 2b − 1 = (2k − 1)2, so that
a+ b = 2k2 − 2k + 1 (so a− b must be odd). For each such k, there are exactly k2 − k values of (a, b) with
a > b and a + b = 2k2 − 2k + 1. Also, a + b < 1000 implies 2a + 2b − 1 < 1999, so the maximum such k is
22. Thus we have a final answer of

22∑
k=1

k2 − k = 2

(
23

3

)
= 3542 .

25. [18] Compute all ordered pairs of integers (a, b) such that(
289

a+ b

)
= 98(b2 − 9)− 2b+ 7.

Proposed by Alicia Li

Solution. Take the equation modulo 17. Since 289 = 172 is a power of 17, 17 will divide the choose
coefficient so long as a+ b ̸= 0, 289. This would mean 17 | 98(b2−9)−2b+7, but 98 = 316 which is 1 modulo
17 by Fermat’s Little Theorem, so we deduce 17 | b2− 9− 2b+7 which we may rewrite as 17 | (b− 1)2− 3 or
(b− 1)2 ≡ 3 mod 17. One may manually check that 3 is not a quadratic residue modulo 17, meaning there
is no x such that x2 ≡ 3 mod 17. Alternatively, one may compute the Legendre symbol using the Law of
Quadratic Reciprocity to find (

3

17

)
=

(
17

3

)
=

(
2

3

)
= −1

and so 3 is not a quadratic residue modulo 17. This means (b − 1)2 ≡ 3 mod 17 is not possible and
a + b must be either 0 or 289. In either case, the choose coefficient evaluates to 1 and we are left to solve
98(b2 − 9)− 2b+ 7 = 1 or 98(b2 − 9)− 2b+ 6 = 0. We may factor this as

98(b+ 3)(b− 3)− 2(b− 3) = 0

(98(b+ 3)− 2)(b− 3) = 0.

The first term cannot evaluate to 0 (say, by taking the value modulo 9), so b = 3 is the only possible case.

Then a+ b = 0 or a+ b = 289, giving us our only solutions (−3, 3) and (286, 3) .

26. [18] Let ABC be a triangle with AB = 7, AC = 8, and BC = 5. Let P be an arbitrary point on BC and E
and F be on AB and AC, respectively, such that BE = BP and CF = CP . If D is the reflection of P over
the angle bisector of ∠A, find the minimum possible area of △DEF .

Proposed by Corwin Eisenbeiss

Solution. Reflect E and F over the angle bisector of ∠A to Q on AC and R on AB and let ω be the
circumcircle of △PEF . Let the center of ω is I and the feet from I to BC and the feet from I to BC, CA,
and AB be X, Y , and Z, respectively. Shown below is a diagram.



A

B C

I

P
D

E

F

R

Q

X

Z

Y

The perpendicular bisector of PE bisects ∠B and passes through I. Similarly, the perpendicular bisector of
PF bisects ∠C and passes through I, so we may deduce I is the incenter of △ABC. As such, reflection over
AI must preserve ω and so D, E, F , P , Q, R all lie on ω. Furthermore, △DEF ∼= △PQR by reflection so
we can instead minimize the area of △PQR.

Our main claim is △PQR ∼ △XY Z. Notice △BPE ∼ △BXZ so

∠XZY = ∠BXY = ∠BPE = ∠BEP = ∠PQR

and similarly △CPF ∼ △CXY so

∠XY Z = ∠CXZ = ∠CPF = ∠CFP = 180◦ − ∠PFQ = ∠PQR

and we have △PQR ∼ △XY Z as desired.

Then since all such △PQR are similar and have circumcenter I, the area is minimized when the circumra-
dius is minimized, i.e. ω is the incircle and P = X meaning Q = Y and R = Z. Now, using AY = AZ,
BX = BY , and CX = CZ, one may derive AY = AZ = s− a, BX = BY = s− b, CX = CZ = s− c where
s is the semiperimeter and a = BC, b = CA, c = AB. Then s = 5+8+7

2 = 10 and a = 5, b = 8, c = 7 so



AY = AZ = 5, BX = BY = 2, CX = CZ = 3. From here, we compute the area of △XY Z as follows

[XY Z] = [ABC] · [XY Z]
[ABC]

= [ABC]

(
[ABC]

[ABC]
− [AY Z]

[ABC]
− [BXY ]

[ABC]
− [CXZ]

[ABC]

)
= [ABC]

(
1−

1
2 ·AY ·AZ · sin∠A
1
2 ·AB ·AC · sin∠A

−
1
2 ·BX ·BY · sin∠B
1
2 ·BC ·BA · sin∠B

−
1
2 ·AY ·AZ · sin∠C
1
2 · CA · CB · sin∠C

)

= [ABC]

(
1− AY ·AZ

AB ·AC
− BX ·BY
BC ·BA

− AY ·AZ
CA · CB

)
= [ABC]

(
1− 5 · 5

7 · 8
− 2 · 2

5 · 7
− 3 · 3

8 · 5

)
= [ABC]

(
56

56
− 25

56
− 4

35
− 9

40

)
= [ABC]

(
56

56
− 25

56
− 19

56

)
=

3

14
[ABC].

Using Heron’s formula,

[ABC] =
√
s(s− a)(s− b)(s− c) =

√
10 · 5 · 2 · 3 = 10

√
3

and so the answer is 3
14 · 10

√
3 =

15
√
3

7
.

27. [19] Consider a 40-cycle graph C and let A be a vertex of C, let B be a neighbor of A, and let A′ and B′ be
their antipodes, respectively. Consider the graph C ′, whose vertices are exactly the vertices of C, and whose
edges are the edges of C, as well as the edges connecting each pair of antipodal vertices, for a total of 60
edges. Let a borisaurus be a partition of a graph’s vertex set into 4-vertex subsets such that in each subset
S of the partition, the following two conditions hold:

(i) for any s in S, there exists s′ such that s and s′ are connected by an edge,

(ii) for any s, s′ in S with s and s′ connected by an edge, there is a third vertex s′′ in S such that s′′ is
connected by an edge to at least one of s and s′.

How many borisauruses on C ′ satisfy the additional condition that if both A and B or both A′ and B′ are
in the same subset S of the borisaurus, then that set is precisely {A,B,A′, B′}?

Proposed by Gabe Levin

Solution. Good luck!

28. [19] Let the multivariable polynomial Pn(x, y) be defined by

Pn(x, y) =

n∑
i=0

xiyn−i

for all n. Compute the number of ordered pairs of complex numbers (x, y) for which P14(x + 1, y + 4) =
P23(x+ 2, y + 3) = 0.

Proposed by Corwin Eisenbeiss

Solution. Notice that if we divide Pn(x, y) by yn (y = 0 means x = 0, which we will see is always a
solution), we get a polynomial in terms of x

y . In particular,

Pn(x, y)

yn
=

(
x

y

)n

+

(
x

y

)n−1

+ · · ·+
(
x

y

)
+ 1,



meaning Pn(x, y) = 0 really means x
y = ω where ω is an n + 1th root of unity not equal to 1. Then for

example P14(x + 1, y + 4) = 0 tells us x+1
y+4 = ω for ω ̸= 1 as a 15th root of unity and P23(x + 2, y + 3) = 0

tells us x+2
y+3 = ζ for ζ ̸= 1 as a 24th root of unity. Although these are complex numbers, the first set of

equations is 14 (complex) lines through (−1,−4) and the second set of equations is 23 lines through (−2,−3).
Intuitively, any pair of these lines should give an intersection so long as they are not “parallel” which would
give an answer of 14 · 23, so our main claim will be to show this intuition is largely true. Of course, this
statement generalizes past these numbers, but for convenience we will use the given numbers.

Note the first equation implies (x + 1) = (y + 4)ω =⇒ x = yω + 4ω − 1 and (x + 2) = (y + 3)ζ =⇒
x = yζ + 3ζ − 2. If there is no solution, then yω − 4ω − 1 = yζ + 3ζ − 2 has no solution, but rearranging
this will give the solution y = 3ζ−2+4ω+1

ω−ζ , so indeed, as long as ω ̸= ζ, we have exactly 1 intersection. Note
that ω = ζ will happen at all numbers that are both 15th roots of unity and 24th roots of unity. There are
gcd(15, 24) = 3 of these, but 1 is the number 1 so we only need to remove 2 cases here.

Furthermore, each point is the intersection of at most 2 lines except potentially the points (−1,−4)
and (−2,−3). This is because if three distinct lines intersect at a point, two lines share either (−1,−4) or
(−2,−3) and that common point and are thus not distinct. Of course, if this common point is exactly one
of the two, these lines actually only share one point, so we need to keep note of if (−2,−3) is a solution to
x+1
y+4 = ω =⇒ ω = −1 or if (−1,−4) is a solution to x+2

y+3 = ζ =⇒ ζ = −1. Notice that ω is a 15th root of
unity so ω = −1 is impossible, but ζ is a 24th root of unity so ζ = −1 actually is possible. This means this
line will intersect the 14 lines at 1 point, causing us to have 13 less intersections than expected.

Summing it all up, there are 14 · 23− 2− 13 = 307 ordered pairs.

29. [20] Let ABCD be a cyclic quadrilateral with AD and BC meeting at T , AC and BD meeting at P , and
AB and CD meeting at a 60◦ angle. Point M ̸= P is the intersection of the circumcircles of △PAB and
△PCD and V is the reflection of M over CD. Given that AB

CD = 3
5 and MV = 224, compute TV .

Proposed by Corwin Eisenbeiss

Solution. Good luck!

30. [20] For primes p, let f(p) be the number of ordered pairs (a, b) of integers such that 0 ≤ a, b < p and p
divides a5 − 10a3b2 + 10a2b3 − b5 − 1 and 5a4b− 10a3b2 + 5ab4 − b5. Let Sn be the set of the first n primes.
Compute

lim
n→∞

1

n

∑
p∈Sn

f(p)2.

Proposed by Tanvir Ahmed

Solution. Let ω be a primitive 3rd root of unity, so ω2 + ω + 1 = 0, which means ω2 = −1 − ω. Also, let
P (a, b) = a5 − 10a3b2 + 10a2b3 − b5 and Q(a, b) = 5a4b − 10a3b + 5ab4 − b5. The main observation is the
following:

(a+ bω)5 = a5 + 5a4bω + 10a3b2ω2 + 10a2b3 + 5ab4ω + b5ω2

= (a5 − 10a3b2 + 10a2b3 − b5) + (5a4b− 10a3b+ 5ab4 − b5)ω

= P (a, b) +Q(a, b)ω,

and we see the polynomials given in the problem pop out. Also notice that for all the pairs that are counted
by f(p), a, b ∈ {0, 1, . . . , p − 1}, and this set covers all residues mod p exactly once. Thus, we can think
about f(p) as counting pairs in F2

p. Also notice that the conditions given for pairs counted by f(p) are just
P (a, b) ≡ 1 (mod p) and Q(a, b) ≡ 0 (mod p).

For the first case, suppose that ω ∈ Fp, meaning there is a primitive 3rd root of unity mod p. This is
equivalent to p ≡ 1 (mod 3). In this case, (a + bω)5 = 1 in Fp. However, ω2 is also a primitive 3rd root of
unity, so by the same reasoning, we can arrive at (a + bω2)5 = 1. If p ≡ 1 (mod 5), then there are 5 5th



roots of unity mod p, so there are 5 choices for a + bω and 5 for a + bω2. For each of the 25 combinations
of choices, we can solve a system of equations to get unique values for a and b. If we have a pair (a, b) such
that a+ bω and a+ bω2 are 5th roots, we can also expand out their 5th powers to get P (a, b)+Q(a, b)ω ≡ 0
(mod p) and P (a, b) +Q(a, b)ω2 ≡ 1 (mod p). Taking suitable linear combinations will produce P (a, b) ≡ 1
(mod p) and Q(a, b) ≡ 0 (mod p). In other words, if p ≡ 1 (mod 3) and p ≡ 1 (mod 5), f(p) = 25.

In the case where p ≡ 1 (mod 3) and p ̸≡ 1 (mod 5), we still need a+ bω and a+ bω2 (both elements of Fp)
to be 5th roots, but 1 is the only 5th root. Thus, in this case f(p) = 1, corresponding to the ordered pair
(a, b) = (1, 0).

In the case where p ≡ 2 (mod 3), ω /∈ Fp, so we consider the field extension Fp[ω] = Fp2 . Once again, we
need to count the solutions to (a + bω)5 = 1 or a + bω being a 5th root of unity where a, b ∈ Fp. However,
Fp[ω] is a vector space over Fp with basis {1, ω}. Therefore, if we have a+ bω = ζ for some 5th root ζ ∈ Fp2 ,
there is exactly one solution for (a, b). Therefore, in this case, f(p) is just the number of 5th roots of unity
in Fp2 . Since F×

p2
, the multiplicative group of Fp2 , is cyclic of order p2 − 1, there are 5 5th roots of unity if

5 | p2 − 1 and 1 root otherwise. Thus, f(p) = 5 if p ≡ 1, 4 (mod 5) and f(p) = 1 if p ≡ 2, 3 (mod 5).

Now we summarize our findings. For primes p > 5, the value of f(p) only depends on p mod 15. We can use
the Chinese Remainder Theorem and all the cases we got earlier to write the following:

f(p) =


25 p ≡ 1 (mod 15)

5 p ≡ 11, 14 (mod 15)

1 p ≡ 2, 4, 7, 8, 13 (mod 15)

.

For the final computation, for integers a with gcd(a, 15) = 1, let πa(n) be the number of elements of Sn
(which are primes) that are congruent to a mod 15. By Dirichlet’s Theorem, we have

lim
n→∞

πa(n)

|Sn|
= lim

n→∞

πa(n)

n
=

1

φ(15)
=

1

8
,

or in other words, πa(n) ∼ n
8 . Thus, we have

1

n

∑
p∈Sn

f(p)2 ∼ 1

n
· n
8
(252 + 52 + 52 + 12 + 12 + 12 + 12 + 12)

=
680

8
= 85

where we obtained this by summing over primes congruent to each of the coprime residues mod 15. The
above calculation is just another way of saying

lim
n→∞

1

n

∑
p∈SN

f(p)2 = 85 .

Solution. This solution is functionally the same as the previous, but is phrased more directly in terms
of algebraic number theory. We use the same notation introduced in the previous solution and start from
(a+ bω)5 = P (a, b) +Q(a, b)ω. In this solution, the ring Z[ω] will play a crucial role.

If (a, b) is a pair counted by f(p), we know P (a, b) ≡ 1 (mod p) and Q(a, b) ≡ 1 (mod p). This means that
(a+bω)5 ≡ 1 (mod p), with respect to the ring Z[ω]. In other words, in the quotient Z[ω]/(p), (a+bω)5 = 1,
where (p) denotes the ideal generated by p. Now we have some cases.

If p ≡ 1 (mod 3), p is not prime in Z[ω], and there exist primes π1, π2 ∈ Z[ω] such that p = π1π2 and
N(π1) = N(π2) = p. Thus, Z[ω]/(p) ∼= Z[ω]/(π1) × Z[ω]/(π2) ∼= F2

p by the Chinese Remainder Theorem.
Now we need to find the number of elements of F2

p whose 5th power is 1. Such an element can only come
about by combining two elements of Fp whose 5th power is 1. If p ≡ 1 (mod 5), there are 5 5th roots of unity



in Fp, so there are 25 solutions to x5 = 1 in F2
p, meaning f(p) = 25 for this case. If p ≡ 1 (mod 5) though,

there is only 1 5th root of unity in Fp and consequently only one solution in F2
p as well. Thus, f(p) = 1 for

p ≡ 1 (mod 3) and p ̸≡ 1 (mod 5).

If p ≡ 2 (mod 3), then p is prime in Z[ω] and Z[ω]/(p) forms a field of order N(p) = p2, which is just Fp2 .
There are 5 primitive 5th roots of unity here if and only if 5 | p2 − 1, so f(p) = 5 if p ≡ 2 (mod 3) and
p ≡ 1, 4 (mod 5). Otherwise, if p ≡ 2 (mod 3) and p ≡ 2, 3 (mod 5), then f(p) = 1. The computation step
with Dirichlet’s Theorem proceeds as in the previous solution.


