
1. In a game of ping-pong, the score is 4 − 10. Six points later, the score is 10 − 10. You remark that it was
impressive that I won the previous 6 points in a row, but I remark back that you have won n points in a row.
What the largest value of n such that this statement is true regardless of the order in which the points were
distributed?

Proposed by Cody Johnson

Answer: 2

Solution. We claim the answer is n = 2 . To prove this, first note that n = 2 is an upper bound, arising
from the sequence of points

AABAABAABAABAA.

(Here A denotes a point from you while B denotes a point from me.) To see that n = 2 is sufficient, observe
that my four wins divide your ten wins into five winning streaks; since the total number of wins is 10, some
winning streak must have size at least two. This proves the claim.

2. Find all sets of five positive integers whose mode, mean, median, and range are all equal to 5.

Proposed by David Altizio

Answer: 2, 5, 5, 6, 7; 3, 4, 5, 5, 8

Solution. When listing the five positive integers in order from least to greatest, the first, third, and fifth
numbers are a, 5, and a+ 5, for some integer a between 1 and 5. Furthermore, since the mode of the data set
is 5, either the second or fourth integer is 5, and in either case the remaining integer is some integer b. Since
the mean of this data set is 5, we have

a+ 5 + 5 + b+ (a+ 5) = 25,

or 2a+ b = 10. The only two solutions to this that satisfy a ≤ b ≤ a+ 5 are (2, 6) and (3, 4); these correspond

to the sets 2, 5, 5, 6, 7 and 3, 4, 5, 5, 8 .

3. Let ABC be a triangle with centroid G and BC = 3. If ABC is similar to GAB, compute the area of ABC.

Proposed by Howard Halim

Answer: 3
√
2

2

Solution. Let M be the midpoint of BC. The condition 4ABC ∼ 4GAB implies

∠MAB ≡ ∠GAB = ∠ABC,

so AM = MB = MC. This implies AB ⊥ AC.
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Now note that GA = 1
3BC = 1, so upon letting AB = x we obtain the equation 1

x = x
3 ; this yields x =

√
3.

Thus Pythagorean Theorem yields AC =
√

6, so the area of triangle ABC is 1
2 ·
√

3 ·
√

6 = 3
√
2

2 .

4. Given n = 2020, sort the 6 values
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n

, and 2n
22

from least to greatest. Give your answer as a 6 digit permutation of the string “123456”, where the number
i corresponds to the i-th expression in the list, from left to right.

Proposed by Adam Bertelli

Answer: 163542

Solution. We can first simplify all of the expressions by taking the base 2 logarithm of each, giving us

n2 log n, 22
n

, 2n log n, 2n
2

, nn, n4

Since logarithmic functions grow slower than polynomial functions, which in turn grow slower than exponen-
tials, we immediately know that 1, 6 are the two smallest values, in that order. For the remaining 4 values,
we can take the base 2 logarithm again, giving:

2n, n+ log log n, n2, n log n

From here, we see that 3 is linear (plus a very slow-growing function), 5 is linear times a logarithm, 4 is
quadratic, and 2 is exponential, giving us the remaining ordering of 3 < 5 < 4 < 2, so our total order is
163542.

5. We say that a binary string s contains another binary string t if there exist indices i1, i2, . . . , i|t| with i1 <
i2 < . . . < i|t| such that

si1si2 . . . si|t| = t.

(Tn other words, t is found as a not necessarily contiguous substring of s.) For example, 110010 contains
111. What is the length of the shortest string s which contains the binary representations of all the positive
integers less than or equal to 2048?

Proposed by Misha Ivkov

Answer: 22

Solution. The shortest such string is (10)11 (repeat 10, eleven times). Notice that 2048 = 211 so there
must be a 1 followed by 11 zeroes as a non-contiguous substring. Furthermore, 2047 is just a sequence of 11
ones so we need at least 11 ones.

Now, every binary integer < 2047 has length at most 11 so we choose one of the two options from each of the
11 blocks of size 2 to represent it (adding zeroes on the front, optionally.

6. Misha is currently taking a Complexity Theory exam, but he seems to have forgotten a lot of the material!
In the question, he is asked to fill in the following boxes with ⊆ and ( to identify the relationship between
different complexity classes:

NL P NP PH PSPACE EXP

and
coNL P coNP PH

Luckily, he remembers that P 6= EXP, NL 6= PSPACE, coNL 6= PSPACE, and NP 6= coNP =⇒ P 6= NP ∧ P 6=
coNP. How many ways are there for him to fill in the boxes so as not to contradict what he remembers?

Proposed by Misha Ivkov



Answer: 89

Solution. More is known: NL = coNL (nondeterministic space classes closed under complement by Immerman–
Szelepcsényi) but that would make the problem less fun.

Now, let’s case on NP 6= coNP. If this is true, then we have pretty much everything else for free: the inclusions
NL ? P, coNL ? P, NP ? PH, coNP ? PH, PH ? PSPACE, PSPACE ? EXP are all free to be anything. So, in
this case there are 26 = 64 possibilities.

Now suppose that NP = coNP. Let’s case on PH ? PSPACE. If PH 6= PSPACE then all other assertions are
again free. These are NL ? P, coNL ? P, NP ? PH, PSPACE ? EXP so there are 24 = 16 possibilities.

Finally, suppose that PH = PSPACE. Then the only constraints left are NL ? P, coNL ? P, P ? PH,
PSPACE ? EXP. Notice that if P = PH then all the others are fixed to be not equal, while if P 6= PH
then all the others are free. So, the total number of possibilities is 64 + 16 + 8 + 1 = 89.

7. Points P and Q lie on a circle ω. The tangents to ω at P and Q intersect at point T , and point R is chosen
on ω so that T and R lie on opposite sides of PQ and ∠PQR = ∠PTQ. Let RT meet ω for the second time
at point S. Given that PQ = 12 and TR = 28, determine PS.

Proposed by David Altizio

Answer: 36
7

Solution. First observe that angles TPQ and PRQ are congruent since they both subtend minor arc PQ;
combining this with ∠PQR = ∠PTQ means that 4PTQ ∼ 4PQR, and in particular that RQ = PQ = 12.
This means that PT

PQ = PQ
PR , so PT · PR = 144. But now invoking the fact that triangles PTS and RTP are

similar yields

PS =
PT · PR
TR

=
144

28
=

36

7
.
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Proposed by Adam Bertelli

Answer:
(
3031
1010

)
OR

(
3031
2021

)
Solution. We present two solutions to this problem.

First Solution, by Double Counting We claim, in general, that∑
k≥0

(
k

n

)(
m− k
n

)
=

(
m+ 1

2n+ 1

)
.

Indeed, both sides count the number of 2n+ 1-element subsets of m+ 1; the right hand side does it directly,
while the left hand side cases on the location of the median element in the set. This means the sum simplifies

to
(
3031
1010

)
.

Second solution, by Generating Functions Recall the power series expansion

1

(1− x)k
=
∑
n≥0

(
n

k

)
xk



for every positive integer k. Thus, we may use the formula for convolution to write

∑
m+n=3030
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)
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)
xk

)2
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)
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1
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)
=
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)
.

9. Over all natural numbers n with 16 (not necessarily distinct) prime divisors, one of them maximizes the value

of s(n)
n , where s(n) denotes the sum of the divisors of n. What is the value of d(d(n)), where d(n) is the the

number of divisors of n?

Proposed by Adam Bertelli

Answer: 54

Solution. Recall that we can quickly compute the sum of divisors of a number n =
∏
pkii as

∏
(1 + pi +

· · ·+pkii ), as, when expanded, this product covers all possible choices for how many factors of pi a given divisor

can have. Thus, when we add a new factor of pi, s(n) is multiplied by
1+···+pki+1

i

1+···+pki
i

, hence s(n)
n is multiplied

by a factor of
1+···+pki+1

i

pi(1+···+p
ki
i )

= 1 + 1

pi+···+p
ki+1

i

. Since we are trying to increase the value of s(n)
n as quickly as

possible through adding 16 prime factors, it suffices to list out small values of pi + · · · + pki+1
i , and pick the

smallest one each time (as this will correspond to the largest possible 1 + 1

pi+···+p
ki+1

i

at each step). We can

do this by hand quite easily:

2 : 2 6 14 30 62 · · ·
3 : 3 12 39 · · ·
5 : 5 30 · · ·
7 : 7 56

11 : 11 · · ·
13 : 13 · · ·
17 : 17 · · ·
19 : 19 · · ·
23 : 23 · · ·
29 : 29 · · ·
31 : 31 · · ·
37 : 37 · · ·
· · ·

This tells us our optimal choice of n has factors of 24, 32, 52, and 8 other primes chosen exactly once, hence
d(n) = (4 + 1)(2 + 1)2(1 + 1)8 = 28325, so d(d(n)) = (8 + 1)(2 + 1)(1 + 1) = 54.

10. Let ABC be a triangle. The incircle ω of 4ABC, which has radius 3, is tangent to BC at D. Suppose the
length of the altitude from A to BC is 15 and BD2 + CD2 = 33. What is BC?

Proposed by Daniel Li

Answer: 3
√

7

Solution. We’ll solve the problem for general values of h (the height from A), r (the inradius of 4ABC),
and d (the value of BD2 + CD2).

First let α := h/r; via an area argument or the angle bisector theorem, compute b+ c = (α− 1)a. This means
s = α

2 a, so
r

ra
=
s− a
s

=
α− 2

α
,



whence ra = rα
α−2 = rh

h−2r . (For geometry experts, this also follows from the fact that (A,X; I, IA) = −1,
where X is the foot of the A-angle bisector.)

We now claim a lemma of independent interest.

Lemma 1. In any triangle ABC, rra = BD · CD.

Proof. Let E be the tangency point of the A-circle with BC. Then triangles BID and IAEB are similar,
which yields the desired equality.

Therefore

a =
√

(BD + CD)2 =
√
d+ 2rra =

√
d+

2r2h

h− 2r
.

Plugging in the specific numbers yields an answer of 3
√

7 .

11. Find the number of ordered triples of integers (a, b, c), each between 1 and 64, such that

a2 + b2 ≡ c2 (mod 64).

Proposed by Misha Ivkov

Solution. Let f be the map x 7→ x2 on Z/64.

The set of residues which are 1 mod 2 map surjectively under f onto the set Y1 of residues which are 1
mod 8; this map is 4-to-1. Given this, the set of residues which are 2 mod 4 map surjectively to the set Y2
of residues 4 mod 32, this map is 8-to-1. The residues which are 4 mod 8 all map to 16, and the residues
which are 0 mod 8 all map to 0; these are both 8-to-1.

We case on the possibilities for (a2, b2, c2). It is easy to see that the possible residue types are (X, 0, X) (where
X is any square mod 64) and (Y1, 16, Y1), where we have undercounted by a factor of 2 except when X = 0.
We deal with the (X, 0, X) case first.

• Case 1: X = 0. There are then 8 choices for each of a, b, c, all of which work, so there are 83 choices
here.

• Case 2: X ∈ Y1. There are 32 possible choices for a here. There are 8 choices for b. With a fixed, we
must consider all c which square to a2; since the squaring map is 4-to-1 on Y1, there are 4 choices here.
The total count is 32 · 8 · 4 · 2, where we multiply by 2 to account for switching the first two coordinates.

• Case 3: X ∈ Y2. With the same logic as in Case 2, there are 16 choices for a here, 8 choices for b, and
8 choices for c since f is 8-to-1 from 2 mod 4→ 4 mod 32. This gives 16 · 8 · 8 · 2.

• Case 4: X = 16. The same argument gives 8 · 8 · 8 · 2.

Lastly, we need to count the solutions of the form (Y1, 16, Y1); this is parallel to Case 2 and contributes
32 · 8 · 4 · 2 solutions. So the answer is

83 + 32 · 8 · 4 · 2 + 16 · 8 · 8 · 2 + 8 · 8 · 8 · 2 + 32 · 8 · 4 · 2,

or
29 + 211 + 211 + 210 + 211 = 7680 .

12. Determine the maximum possible value of

√
x(2
√
x+
√

1− x)(3
√
x+ 4

√
1− x)

over all x ∈ [0, 1].

Answer: 4
√

5



Solution. Notice that the points (
√
x,
√

1− x) across x ∈ [0, 1] are just the points (a, b) in the first quadrant
lying on the unit circle. Then we are trying to maximize

a(2a+ b)(3a+ 4b)

subject to a2 + b2 = 1 and a, b ≥ 0. Observe that 5a+ (3a+ 4b) = 4(2a+ b). Thus we have by AM-GM:

5a(3a+ 4b) ≤ 4(2a+ b)2

and so if P is our desired product, then
5P ≤ 4(2a+ b)3

with equality when 5a = 3a+4b, or a = 2b. But we observe that 2a+b is also maximized subject to a2+b2 = 1
when a = 2b (consider that 2a + b is the dot product (a, b) · (2, 1)), so we can assume that a = 2b and so
2a + b =

√
22 + 12 =

√
5. Thus we get P ≤ 4

5 · (
√

5)3 = 4
√

5 with equality when a = 2b, which occurs when
x = 4

5 .

13. Given 10 points arranged in a equilateral triangular grid of side length 4, how many ways are there to choose
two distinct line segments, with endpoints on the grid, that intersect in exactly one point (not necessarily on
the grid)?

Proposed by Adam Bertelli

Answer: 519

Solution. We consider two separate cases: when the endpoints of the two segments consist of 3 points in
total, or 4 points in total.

In the first case, for any selection of 3 points we make, there are 3 ways to choose two segments that will
satisfy this property, unless the 3 points are collinear, in which case there is only one way, by choosing each
half of the line as its own segment. The number of ways to have 3 points collinear is 3 ·

(
4
3

)
+ 3 ·

(
3
3

)
= 15, and

the number of total ways to choose 3 points is
(
10
3

)
= 120, so the total in this case is 3(120− 15) + 15 = 330.

In the second case, if we choose 4 points that form a non-concave boundary with positive area, then there is
exactly one way to have the segments intersect, by choosing the two diagonals of this shape (the other two
choices will give opposite sides). Thus we only have to subtract off the choices where all 4 points are collinear
(degenerate), which there are 3 of, or when a point is strictly contained in a triangle formed by the other 3.
Clearly the only point that could satisfy this property is the center point, and we can count 5 possible shapes
of triangles, pictured below, with 1, 2, 3, 6, 6 ways to rotate/reflect them, respectively, giving us a total of(

10

4

)
− 3− (1 + 2 + 3 + 6 + 6) = 210− 21 = 189 .

14. Let a0 = 1 and for all n ≥ 1 let an be the smaller root of the equation

4−nx2 − x+ an−1 = 0.

Given that an approaches a value L as n goes to infinity, what is the value of L?

Answer: π2

4

Solution. We see that
an−1 = an(1− 4−nan)

If we let an = 4n sin2 θn for θn ∈ [0, π/2] then we get

sin2 θn−1 = 4 sin2 θn cos2 θn = sin2 2θn

Now because an is chosen to be the smaller root we are forced to have θn = θn−1/2. Since a0 = 1, we have
θ0 = π/2. It follows that

an = 4n sin2 π

2n+1
=
(

2n sin
π

2 · 2n
)2



Now it is well-known that

lim
x→0

sin(ax)

x
= a

for any a. Applying this to a = π/2 along the sequence x = 2−n shows that an → π2/4.

15. Let ABC be an acute triangle with AB = 3 and AC = 4. Suppose M is the midpoint of segment BC, N is
the midpoint of AM , and E and F are the feet of the altitudes of M onto AB and AC, respectively. Further
suppose BC intersects NE at S and NF at T , and let X and Y be the circumcenters of 4MES and 4MFT ,
respectively. If XY is tangent to the circumcircle of 4ABC, what is the area of 4ABC?

Proposed by Gunmay Handa

Answer: 4
√

2

Solution. Let circles �(MES) and �(MFT ) meet again at V , and Z be the intersection of MV and XY
(which is also the midpoint of MV ). Let D be the foot of the altitude from A to BC, and define K be such
that ADMK is a rectangle.

A

B C

M

N

E
F

S T

X Y

V

D

Z

U

K

Claim 1. The lines MV and BC are perpendicular.

Proof. First remark that

−1 = (B,C;M,∞)
A
= (E,F ;M,K).

Let the tangents to (AEMF ) at E and F meet at V ′. Note that ∠SEV ′ = ∠TFV ′ = 90◦ because N is the
center of �(AEMF ). We also have V ′,M,K collinear, so V ′M ⊥ BC. Therefore V ′ is on �(MES) and
�(MFT ) by right angles so V ′ = V .



Let the tangents to �(ABC) at B and C meet at U .

Claim 2. Point V is the midpoint of MU .

Proof. Let H be the orthocenter of ABC, A′ be the antipode of A on �(ABC), and F1, E1 be the feet of the
altitudes from B and C respectively. Note that �(AH) (the circle with diameter AH), (AEMF ), and (ABC)
concur at some point P because H,M,A′ are collinear and we have similar figures

PE1F1HM ∼ PEFMV ∼ PBCA′U.

Since M is the midpoint of HA′, V is the midpoint of MU .

Now let R be the circumradius and x = OM
R . Then OU

R = 1
x (by inversion). Since V is the midpoint of MU

and Z is the midpoint of MV , we have OZ
R = 3

4x+ 1
4
1
x . By the first claim, XY must be tangent to �(ABC)

at Z, so OZ = R. Therefore x = 1
3 . From here we easily get sinA =

√
8
3 , and so

[ABC] = 1
2AB ·AC sinA = 1

2 · 3 · 4 ·
√
8
3 = 4

√
2 .


