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Problem 1. Show that for all positive integers n,
|[Vrn+vn+1] = |Vin+1| = |Vin+2] = [VAn +3].

2
Solution. Let a = L\/4nJ and b = 4n — L\/4nJ , so that we can write

n =

(a® +9)

1 =

so that a is maximized. Note that a? + b must be a multiple of 4, since n is an
integer. First, we want to find the value of

L\/aQ—i—b—i—lJ )

Since a is maximal, L\/ a’?+b+ 1J must either be a or a + 1. For it to equal a + 1,

it must be the case that b = 2a (because if b were any bigger, a would not be
maximized). Also notice that a must be even for this to be the case, since we know
that 4 | a®* + b. Thus, we have that

|[4n + 1]= {

Since 4n + 2 and 4n + 3 are not congruent to 0 or 1 mod 4, they cannot be perfect
squares, so it must be the case that

[\/471 + 1J = [\/471 + QJ = L\/éln + BJ .
Now, we want to show that

Vi +Vat1| = |[Vin+1].

a 0<b<2a
a+1 b=2a

We claim that

Vin+vVn+1>Van+1

for all positive n. Since n > 0, we have that n?> + n > n?, or n(n + 1) > n?. Since
both sides are positive and /x is an increasing function, we can take the square

root of both sides to get that
Vnn+1) > n.



We can then multiply by 2 and add 2n + 1 on both sides to get

n+n+14+2¢y/nn+1)>4n+1,

(Vi +vn+ 1)2 > (Van + 1)2.

Again, since both sides are positive, we can take the square root of both sides to
obtain the desired result. Because of this, it suffices to show that

Vi Vi1 <1+ |[Vin+1]

If 0 < b < 2a, this is equivalent to showing that

which collapses into

1 1 1
\/Z(a2+b)+\/z(a2+b)+1 =3 (\/a2+b+\/a2+b+4> <a+1.
Since a? + b must be divisible by 4, if a is odd, then the largest possible value of b
is 2a — 3, and the inequality is clearly true for 0 < b < 2a — 3. If a is even, then

the largest possible value of b is 2a — 4, so the inequality will also hold true.

If b = 2a, then we just want to show that

1
5(\/a2+2a+\/a2+2a+4) <a-+2.

Since a > 0, we have that a®> + 2a +4 < a + 4a + 4 = (a + 2)?, which implies the
result. O]



Problem 2. A finite number of points are marked on the plane, no three of them
collinear. A circle is circumscribed around each triangle with marked vertices. Is it
possible that centers of all of these circles are also marked?

Answer. No

Solution. Suppose that such a configuration exists. Then consider the three points
that make up the triangle with the smallest circumradius, and call them A, B,
and C. Let O be the circumcenter of AABC', and R be the circumradius. By our
assumption, O must be a marked point. WLOG let ZA < /B < /C.

C

A MB
K

Define a to be the length of the side of AABC opposite ZA (the length of side
BC), b= CA, and ¢ = AB. By the Extended Law of Sines,

a=2Rsin /A,

and the lengths of b and ¢ follow a similar pattern. Now let w4 be the circumcircle
of AOBC, wp be the circumcircle of AOCA and we to be the circumcircle of
AOAB. Then if Ry is the radius of wy, by the Extended Law of Sines,

B BC B 2Rsin ZA 1 B Rsin ZA B R
A7 96in /BOC 2 sin2/A  2sinZAcos /A  2cos A

R

Similarly, if Rg is the radius of wgp and R¢ is the radius of we, then

R

Ry 2cos LC”

- 2cos /B and Ro =

Then since we have assumed that (ABC') has the smallest circumradius,
R Z RA7 RB) RC7

so R > ﬁ, which means that cos ZA > % Similarly, cos B, cosC' > % Since
CcOSs

cos x is decreasing on x € (0, 7), this implies that
/A, /B, /C <605,

but since angles of a triangle must add up to 180°, this implies that /A = /B =
ZC =60°, so AABC is an equilateral triangle.



Now, let K be the circumcenter of AOAB, and note that it must be a marked
point. Notice that K is the reflection of O over AB, so AOAK is an equilateral
triangle with side length OA. However,

OA:A—B<AB,

V3

and since they are both equilateral triangles, this means that the circumradius
of AOAK is less than the circumradius of AABC. We have thus reached a

contradiction. O

Solution. Suppose that such a configuration exists. Then consider the triangle
formed by two adjacent points A an B on the convex hull of the set of points,
and another point P, in the set. For ¢ > 1, define P; to be the circumcenter of
AAP;_1B. Since we are assuming that the points satisfy the given condition, given
any P;, P;y; must lie in the set as well.

Let 0; = ZAP,B. Then due to the Inscribed Angle Theorem, if 6, < 90°, then
0;+1 = 20;. This means that eventually, there must exist some 6, such that 6, > 90°
(and 0; < 90° for all 1 <i < k).

If 6, = 90°, then P,,; must be the midpoint of AB. However, this contradicts the
assumption that A and B are adjacent. Similarly, if 8, > 90°, then Py, must lie
outside the convex hull of the set of points, another contradiction. O


https://en.wikipedia.org/wiki/Convex_hull

Problem 3. The recursive integer sequence is defined by F),, = %, with

F} = n (notice this sequence terminates when there are no longer integer values).
If there exists an integer ¢ > 1 such that F; | n, must it be true that n is of the
form 2% — 1 for integer k?

Solution. Notice that the sequence must terminate. For all integer F, > 1,
F’“‘Zl_l > % =0, and Fy_1 = 2F} + 1 > F}, so the recursive sequence is a
decreasing sequence of positive integers. Hence, by infinite descent, the sequence

must terminate.

Fk+1 =

Consider the inverse of the linear recurrence. If there exists another integer
i > 1 such that F; | Fy, then let Gy,G2,Gs, ... be another recursive sequence
defined by Gy = F; and G,, = 2G,,_1 + 1. F; | F} is then analogous to G; | G;, as
the sequence is simply reversed and the terminating condition is removed.

We can then find the closed form for G,. Notice that if we express G,, in bi-
nary, the recursive condition is equivalent to appending a 1 to the end of the binary
representation of GG,,_1. Thus, GG,, in binary is the binary representation of GG; with
n — 1 ones appended to the end, so

n—2

G, =2""1G, + Z 2t — o=l ponl 1,

i=0
Thus, G; | G; implies that
G| 277G+ 27 — 1,

which can only happen if Gy | 27! — 1. Analyzing the final condition, if G is of
the form 2¥ — 1, then

G, =271G +27 -1 =2F — 1,

which means that
Gl — 2k’+1—’L o 1

Thus, as long as (7 is not one less than a power of two, then G; = n is no longer
of that form too. Combined with the condition that Gy | 27! — 1, the question is
simply asking if there exists a divisor of a number one less than a power of two
such that it itself is not one less than a power of two.

To find an example that disproves the problem statement, consider the equa-
tion 2* — 1 = 15, and note that 5 is a divisor that is not one less than a power of 2.
Then, G; =5 and i = 5, so

Gs =2'(5) +2" — 1 =95.

Hence, n = 95 is a counterexample to the problem statement, since F; = G; =
5195 and 95 # 2% — 1 for integer k. This is also in fact the smallest such
counterexample. O



Problem 4. Let AABC be a triangle, and let L be the point on line BC' such
that AL be a bisector of ZBAC'. Let D be the midpoint of AL, and E be the
projection of D to AB. Given that AC' = 3AFE, prove that ACFEL is an isosceles
triangle.

B L c

Solution. Let F' be the projection of D onto AC, and let P be the projection of L
onto AC. By AAS (LAED = ZAFD =90°, ZEAD = ZAFD, and AD = AD),

ANAED = NAFD,
so AE = AF. Thus, by ASA (since AE = AF, /ZEAL = /ZFAL, and AL = AL),
ANAEL = NAFL,

so LEE = LF. Now we want to show that LF = LC. Since DF' and PL are both
perpendicular to AC, they are parallel to each other, so we also know that

ANADF ~ ANALP.

Thus,
AF  AD 1

AP AL 7
so AE = AF = FP. Furthermore, since we are given that AC' = 3AF, we find that

AE = AF = FP = PC.

Thus, P is a perpendicular bisector of F'C', so LF = LC. Thus, we have that
LE =LF = LC, so ACFEL is isosceles, as desired. O



Problem 5. Consider the set S containing all the subsets of {1,2,3---n} of
size 2. Consider another set 7" of all natural numbers between 1 to 2 R 2 inclusive.

For which n there exist a bijection f : .S +— T such that for any non-disjoint sets

a,b€ Switha#b, (n—1)1 f(a) — f(b)?

Answer. Any even n

Solution. Notice that the condition for the function is equivalent to the following:

Let gx : S\ {k} — T be defined by gr(a) = f({a,k}). Then for all 1 <k < n, it
must be the case that for all distinct ¢, 7 in the domain of gy,

9x(i) # gr(j) (mod n —1).

We can also visualize this by drawing a box where the value inside the cell in the
kth row and ath column is gx(a), and the cells where k = a are crossed out. Then
any two cells in a row cannot have the same residue not n — 1.

Since the size of the domain of g is n — 1 (since it’s S\ {k}), it follows that
all values of gx(a) must be distinct mod n — 1. In other words, the range of gy
(mod n—1)is {0,1,...,n —2}.

Thus, for each k, every residue mod n — 1 appears exactly once in the range
of g, so across all 1 < k < n, every residue will appear a total of n times. Notice
that if we combine the ranges of all g5, we will get every element of T twice since
every f({k,a}) appears exactly twice: once from gi(a) and once from g, (k). Thus,
every residue mod n — 1 must appear in 7" exactly 7 times, and this is not possible
when n is odd.

We can also think of this visually by noting that each row has each residue
once, and there are n rows, so each residue mod n — 1 appears n times in the grid.
However, since gi(a) = g.(k) = f({a, k}), the grid is also symmetrical about the
line k = a, so the sets of numbers above and below the line should be identical.
Thus, each residue should appear 7 times in each set, but this is impossible.

Now, we would like to show that such a function does exist for even n. We
claim that for a < b,

a+b (modn—1) b#n

f({a,b}) (mod n —1)= {2a (modn—1) b=n

will satisfy the given conditions. We consider the value of f({a,k}), where a is
held constant. First consider the case where a # n; if k£ < a, then the outputs
range from a +1,a+2,...,2a —1 (mod n — 1). If a < k < n, the outputs range
from 2a+1,...,a+n—1=a (mod n —1). If k = n, then we get 2a. Thus, we
get n — 1 consecutive outputs mod n — 1, so they must all be different.

The case where a = n is similar; we simply get 2k as our outputs. Since n is even,
n — 1 will be odd, so {0,2,4,...,2(n —2)} ={0,1,2,...,n — 2} (mod n—1), so

all the outputs will be distinct mod n — 1 as well.

Lastly, from our argument before, we get that each residue mod n — 1 will appear



5 times in our outputs. Since n is even, this is possible, and the numbers from 1 to

n2—n

5 indeed has each residue mod n — 1 appear 3 times. Thus, we can always as-
sign our outputs to elements of 7', since only the residues mod n—1 are what matter.

The following is a visual representation of the construction for n = 10.
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