
NYCMT 2024-2025 Homework #6
Solutions

NYCMT

May 2025

Problem 1. Show that for all positive integers n,⌊√
n+

√
n+ 1

⌋
=

⌊√
4n+ 1

⌋
=

⌊√
4n+ 2

⌋
=

⌊√
4n+ 3

⌋
.

Solution. Let a =
ö√

4n
ù
and b = 4n−

ö√
4n
ù2

, so that we can write

n =
1

4

(
a2 + b

)
so that a is maximized. Note that a2 + b must be a multiple of 4, since n is an
integer. First, we want to find the value ofö√

a2 + b+ 1
ù
.

Since a is maximal,
ö√

a2 + b+ 1
ù
must either be a or a+ 1. For it to equal a+ 1,

it must be the case that b = 2a (because if b were any bigger, a would not be
maximized). Also notice that a must be even for this to be the case, since we know
that 4 | a2 + b. Thus, we have that

⌊4n+ 1⌋=
®
a 0 ≤ b < 2a

a+ 1 b = 2a

Since 4n+ 2 and 4n+ 3 are not congruent to 0 or 1 mod 4, they cannot be perfect
squares, so it must be the case thatö√

4n+ 1
ù
=
ö√

4n+ 2
ù
=
ö√

4n+ 3
ù
.

Now, we want to show thatö√
n+

√
n+ 1

ù
=
ö√

4n+ 1
ù
.

We claim that √
n+

√
n+ 1 >

√
4n+ 1

for all positive n. Since n > 0, we have that n2 + n > n2, or n(n+ 1) > n2. Since
both sides are positive and

√
x is an increasing function, we can take the square

root of both sides to get that »
n(n+ 1) > n.
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We can then multiply by 2 and add 2n+ 1 on both sides to get

n+ n+ 1 + 2
»

n(n+ 1) > 4n+ 1,

which collapses into Ä√
n+

√
n+ 1

ä2
>
Ä√

4n+ 1
ä2

.

Again, since both sides are positive, we can take the square root of both sides to
obtain the desired result. Because of this, it suffices to show that

√
n+

√
n+ 1 < 1 +

ö√
4n+ 1

ù
If 0 ≤ b < 2a, this is equivalent to showing that…

1

4
(a2 + b) +

…
1

4
(a2 + b) + 1 =

1

2

Ä√
a2 + b+

√
a2 + b+ 4

ä
< a+ 1.

Since a2 + b must be divisible by 4, if a is odd, then the largest possible value of b
is 2a− 3, and the inequality is clearly true for 0 ≤ b ≤ 2a− 3. If a is even, then
the largest possible value of b is 2a− 4, so the inequality will also hold true.

If b = 2a, then we just want to show that

1

2

Ä√
a2 + 2a+

√
a2 + 2a+ 4

ä
< a+ 2.

Since a ≥ 0, we have that a2 + 2a+ 4 ≤ a+ 4a+ 4 = (a+ 2)2, which implies the
result.
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Problem 2. A finite number of points are marked on the plane, no three of them
collinear. A circle is circumscribed around each triangle with marked vertices. Is it
possible that centers of all of these circles are also marked?

Answer. No

Solution. Suppose that such a configuration exists. Then consider the three points
that make up the triangle with the smallest circumradius, and call them A, B,
and C. Let O be the circumcenter of △ABC, and R be the circumradius. By our
assumption, O must be a marked point. WLOG let ∠A ≤ ∠B ≤ ∠C.

Define a to be the length of the side of △ABC opposite ∠A (the length of side
BC), b = CA, and c = AB. By the Extended Law of Sines,

a = 2R sin∠A,

and the lengths of b and c follow a similar pattern. Now let ωA be the circumcircle
of △OBC, ωB be the circumcircle of △OCA and ωC to be the circumcircle of
△OAB. Then if RA is the radius of ωA, by the Extended Law of Sines,

RA =
BC

2 sin∠BOC
=

2R sin∠A
2

· 1

sin 2∠A
=

R sin∠A
2 sin∠A cos∠A

=
R

2 cos∠A
.

Similarly, if RB is the radius of ωB and RC is the radius of ωC , then

RB =
R

2 cos∠B
and RC =

R

2 cos∠C
.

Then since we have assumed that (ABC) has the smallest circumradius,

R ≥ RA, RB, RC ,

so R ≥ R
2 cos∠A , which means that cos∠A ≥ 1

2
. Similarly, cosB, cosC ≥ 1

2
. Since

cosx is decreasing on x ∈ (0, π), this implies that

∠A,∠B,∠C ≤ 60◦,

but since angles of a triangle must add up to 180◦, this implies that ∠A = ∠B =
∠C = 60◦, so △ABC is an equilateral triangle.
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Now, let K be the circumcenter of △OAB, and note that it must be a marked
point. Notice that K is the reflection of O over AB, so △OAK is an equilateral
triangle with side length OA. However,

OA =
AB√
3
< AB,

and since they are both equilateral triangles, this means that the circumradius
of △OAK is less than the circumradius of △ABC. We have thus reached a
contradiction.

Solution. Suppose that such a configuration exists. Then consider the triangle
formed by two adjacent points A an B on the convex hull of the set of points,
and another point P1 in the set. For i > 1, define Pi to be the circumcenter of
△APi−1B. Since we are assuming that the points satisfy the given condition, given
any Pi, Pi+1 must lie in the set as well.

Let θi = ∠APiB. Then due to the Inscribed Angle Theorem, if θi < 90◦, then
θi+1 = 2θi. This means that eventually, there must exist some θk such that θk ≥ 90◦

(and θi < 90◦ for all 1 ≤ i < k).

If θk = 90◦, then Pk+1 must be the midpoint of AB. However, this contradicts the
assumption that A and B are adjacent. Similarly, if θk > 90◦, then Pk+1 must lie
outside the convex hull of the set of points, another contradiction.
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Problem 3. The recursive integer sequence is defined by Fn = Fn−1−1
2

, with
F1 = n (notice this sequence terminates when there are no longer integer values).
If there exists an integer i > 1 such that Fi | n, must it be true that n is of the
form 2k − 1 for integer k?

Solution. Notice that the sequence must terminate. For all integer Fk ≥ 1,
Fk+1 =

Fk−1−1

2
≥ 1−1

2
= 0, and Fk−1 = 2Fk + 1 > Fk, so the recursive sequence is a

decreasing sequence of positive integers. Hence, by infinite descent, the sequence
must terminate.

Consider the inverse of the linear recurrence. If there exists another integer
i > 1 such that Fi | F1, then let G1, G2, G3, . . . be another recursive sequence
defined by G1 = Fi and Gn = 2Gn−1 + 1. Fi | F1 is then analogous to G1 | Gi, as
the sequence is simply reversed and the terminating condition is removed.

We can then find the closed form for Gn. Notice that if we express Gn in bi-
nary, the recursive condition is equivalent to appending a 1 to the end of the binary
representation of Gn−1. Thus, Gn in binary is the binary representation of G1 with
n− 1 ones appended to the end, so

Gn = 2n−1G1 +
n−2∑
i=0

2i = 2n−1G1 + 2n−1 − 1.

Thus, G1 | Gi implies that

G1 | 2i−1G1 + 2i−1 − 1,

which can only happen if G1 | 2i−1 − 1. Analyzing the final condition, if Gi is of
the form 2k − 1, then

Gi = 2i−1G1 + 2i−1 − 1 = 2k − 1,

which means that
G1 = 2k+1−i − 1.

Thus, as long as G1 is not one less than a power of two, then Gi = n is no longer
of that form too. Combined with the condition that G1 | 2i−1 − 1, the question is
simply asking if there exists a divisor of a number one less than a power of two
such that it itself is not one less than a power of two.

To find an example that disproves the problem statement, consider the equa-
tion 24 − 1 = 15, and note that 5 is a divisor that is not one less than a power of 2.
Then, G1 = 5 and i = 5, so

G5 = 24(5) + 24 − 1 = 95.

Hence, n = 95 is a counterexample to the problem statement, since Fi = G1 =
5 | 95 and 95 ̸= 2k − 1 for integer k. This is also in fact the smallest such
counterexample.
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Problem 4. Let △ABC be a triangle, and let L be the point on line BC such
that AL be a bisector of ∠BAC. Let D be the midpoint of AL, and E be the
projection of D to AB. Given that AC = 3AE, prove that △CEL is an isosceles
triangle.

Solution. Let F be the projection of D onto AC, and let P be the projection of L
onto AC. By AAS (∠AED = ∠AFD = 90◦, ∠EAD = ∠AFD, and AD = AD),

△AED ∼= △AFD,

so AE = AF. Thus, by ASA (since AE = AF , ∠EAL = ∠FAL, and AL = AL),

△AEL ∼= △AFL,

so LE = LF. Now we want to show that LF = LC. Since DF and PL are both
perpendicular to AC, they are parallel to each other, so we also know that

△ADF ∼ △ALP.

Thus,
AF

AP
=

AD

AL
=

1

2
,

so AE = AF = FP. Furthermore, since we are given that AC = 3AE, we find that

AE = AF = FP = PC.

Thus, P is a perpendicular bisector of FC, so LF = LC. Thus, we have that
LE = LF = LC, so △CEL is isosceles, as desired.
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Problem 5. Consider the set S containing all the subsets of {1, 2, 3 · · ·n} of
size 2. Consider another set T of all natural numbers between 1 to n2−n

2
inclusive.

For which n there exist a bijection f : S 7→ T such that for any non-disjoint sets
a, b ∈ S with a ̸= b, (n− 1) ∤ f(a)− f(b)?

Answer. Any even n

Solution. Notice that the condition for the function is equivalent to the following:

Let gk : S \ {k} → T be defined by gk(a) = f({a, k}). Then for all 1 ≤ k ≤ n, it
must be the case that for all distinct i, j in the domain of gk,

gk(i) ̸≡ gk(j) (mod n− 1).

We can also visualize this by drawing a box where the value inside the cell in the
kth row and ath column is gk(a), and the cells where k = a are crossed out. Then
any two cells in a row cannot have the same residue not n− 1.

Since the size of the domain of gk is n − 1 (since it’s S \ {k}), it follows that
all values of gk(a) must be distinct mod n − 1. In other words, the range of gk
(mod n− 1) is {0, 1, . . . , n− 2}.

Thus, for each k, every residue mod n − 1 appears exactly once in the range
of gk, so across all 1 ≤ k ≤ n, every residue will appear a total of n times. Notice
that if we combine the ranges of all gk, we will get every element of T twice since
every f({k, a}) appears exactly twice: once from gk(a) and once from ga(k). Thus,
every residue mod n− 1 must appear in T exactly n

2
times, and this is not possible

when n is odd.

We can also think of this visually by noting that each row has each residue
once, and there are n rows, so each residue mod n− 1 appears n times in the grid.
However, since gk(a) = ga(k) = f({a, k}), the grid is also symmetrical about the
line k = a, so the sets of numbers above and below the line should be identical.
Thus, each residue should appear n

2
times in each set, but this is impossible.

Now, we would like to show that such a function does exist for even n. We
claim that for a < b,

f({a, b}) (mod n− 1)≡
®
a+ b (mod n− 1) b ̸= n

2a (mod n− 1) b = n

will satisfy the given conditions. We consider the value of f({a, k}), where a is
held constant. First consider the case where a ̸= n; if k < a, then the outputs
range from a+ 1, a+ 2, . . . , 2a− 1 (mod n− 1). If a < k < n, the outputs range
from 2a + 1, . . . , a + n− 1 ≡ a (mod n− 1). If k = n, then we get 2a. Thus, we
get n− 1 consecutive outputs mod n− 1, so they must all be different.

The case where a = n is similar; we simply get 2k as our outputs. Since n is even,
n− 1 will be odd, so {0, 2, 4, . . . , 2(n− 2)} ≡ {0, 1, 2, . . . , n− 2} (mod n− 1), so
all the outputs will be distinct mod n− 1 as well.

Lastly, from our argument before, we get that each residue mod n− 1 will appear
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n
2
times in our outputs. Since n is even, this is possible, and the numbers from 1 to

n2−n
2

indeed has each residue mod n− 1 appear n
2
times. Thus, we can always as-

sign our outputs to elements of T , since only the residues mod n−1 are what matter.

The following is a visual representation of the construction for n = 10.

10 2 4 6 8 1 3 5 7 0
9 1 2 3 4 5 6 7 8 0
8 0 1 2 3 4 5 6 8 7
7 8 0 1 2 3 4 6 7 5
6 7 8 0 1 2 4 5 6 3
5 6 7 8 0 2 3 4 5 1
4 5 6 7 0 1 2 3 4 8
3 4 5 7 8 0 1 2 3 6
2 3 5 6 7 8 0 1 2 4
1 3 4 5 6 7 8 0 1 2

1 2 3 4 5 6 7 8 9 10
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