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1 The Usual

Problem 1. Find the value of the following sum:

∞∑
n=1

1

22n + 1
+

1

22n − 1
.

Answer. 2/3

Solution. Using partial fraction decomposition, we can rewrite

1

22n − 1
=

1/2

22n−1 − 1
− 1/2

22n−1 + 1
.

Then we can rewrite the whole sum as

S =
∞∑
n=1

1

22n + 1
+

1/2

22n−1 − 1
− 1/2

22n−1 + 1

= − 1

220 + 1
+

∞∑
n=0

1

22n + 1
+

∞∑
n=0

1/2

22n − 1
−

∞∑
n=0

1/2

22n + 1

= −1

3
+

∞∑
n=0

1/2

22n + 1
+

∞∑
n=0

1/2

22n − 1

= −1

3
+

1/2

220 + 1
+

1/2

220 − 1
+

1

2

∞∑
n=1

1

22n + 1
+

1

22n − 1

= −1

3
+

1

6
+

1

2
+

1

2
S.

Thus, we get that S = 1
3
+ S

2
, so S = 2/3 , as desired.

Note: This solution relies on the fact that the sum converges. We can prove this
fact rigorously through a comparison test with a geometric series.
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Problem 2. For how many pairs of consecutive integers in the set

{1000, 1001, 1002, · · · , 2000}

is no carrying over required when they are added?

Answer. 156

Solution. We want to find the number of pairs (a − 1, a) such that no carrying
over is required when they are added, where a ∈ {1001, 1002, . . . , 2000}. We claim
that each digit of a must be in the set {0, 1, 2, 3, 4, 5}.

Consider a digit d contained in a. Then either d or d − 1 (mod 10) must be
contained within a− 1, because digits do not skip. Thus, we can manually verify
that if d ∈ {0, 1, 2, 3, 4, 5}, d+ (d− 1 (mod 10)) < 10, and if d is a digit outside of
this set, this is not true.

Now notice that if digits 0, 1, 2, 3, 4 are in a, it will not cause regrouping
when a is added to a− 1. However, if one of the digits is 5, unless d− 1 has the
digit 4 in the corresponding place value, carrying over will be required when they
are added. Thus, every digit to the right of the 5 must be 0; otherwise the digit in
that place value will not change when 1 is subtracted from a.

If the number does not contain a 5, there are 53 = 125 possibilities; the thousands
digit is fixed, and the other 3 digits could be any element of {0, 1, 2, 3, 4}.
If the number contains a 5 in the ones place, there are 52 = 25 possibilities, since
the first and last digits are now fixed.
If the number contains a 5 in the tens place, there are 5 possibilities, since only
the hundreds digit is not fixed.
If the number contains a 5 in the hundreds digit, the entire number is fixed, so
there is only 1 possibility.

Thus, there are 125 + 25 + 5 + 1 = 156 pairs of consecutive integers in the
set satisfying the given property.
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Problem 3. Let △ABC have circumcenter O and orthocenter H, and let it be
such that ∠ABH = ∠HBO. Let K be the intersection of AC and the line through
O parallel to AB. Show that AH = AK.

Solution. Let P be the reflection ofH over AC (so that AH = AP , and AC ⊥ BP ).
Notice that

∠APC = ∠AHC

= 180◦ − (∠CAH + ∠ACH)

= 180◦ − (90◦ − ∠C + 90◦ − ∠A)

= 180− ∠B.

Thus, P lies on (ABC). We now claim that K lies on line OP . In other words, we
want to show that OP ∥ AB. Since

∠ABH = ∠HBO = ∠HPO,

this is true. Now, notice that

∠APK = ∠APO = ∠PAO

=
1

2
(180◦ − ∠AOP )

=
1

2
(180◦ − 2∠ABP )

=
1

2
(180◦ − 2(90◦ − ∠A))

= ∠A.

Similarly, since AB ∥ OP, we can show that

∠AKP = ∠KAB = ∠A.

Thus, ∠APK = ∠AKP, so △KAP is isosceles with AK = AP. Since we also know
that AH = AP, this implies the desired result.
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Problem 4. Prove that for all integers n ≥ 3, there exist odd positive integers
x, y such that 7x2 + y2 = 2n.

Solution. We prove this through mathematical induction on n.

Base Case: n = 3
Clearly, x = y = 1 is a valid solution to this equation, so the base case holds.

Inductive Hypothesis: We assume that the statement holds for n = k for some
integer k ≥ 3. In other words, we assume that there exist odd positive integers xk,
yk such that 7x2

k + y2k = 2k.

Inductive Step: We want to show that the statement holds for n = k + 1, so
given the inductive hypothesis, we want to show that there exist odd positive
integers xk+1 and yk+1 such that 7x2

k+1 + y2k+1 = 2k+1.

By the inductive hypothesis, there exist odd positive integers xk, yk such that 7x2
k +

y2k = 2k.. We note that we can rewrite 2k = 7x2
k + y2k = (xk

√
−7+ yk)(xk

√
−7− yk).

We want to find a way to maintain this conjugate pair-esque form while multiplying
the total quantity by 2. Because

1 +
√
−7

2
· 1−

√
−7

2
= 2

and the two factors are conjugates, we can multiply this to our existing expression
to get that

(xk

√
−7 + yk)(xk

√
−7− yk)

Ç
1 +

√
−7

2

åÇ
1−

√
−7

2

å
= 2k+1.

Next, there are two possible ways to pair up the original terms and the terms of
the conjugate pair that multiplies to 2. If we pair up xk

√
−7 + yk and 1+

√
−7

2
and

pair the other two factors together, we obtain the equationÅ
xk + yk

2

√
−7 +

yk − 7xk

2

ãÅ
xk + yk

2

√
−7− yk − 7xk

2

ã
= 2k+1,

or we can pair up xk

√
−7 + yk and 1−

√
−7

2
and pair the other two factors together

to obtain the equationÅ
xk − yk

2

√
−7 +

yk + 7xk

2

ãÅ
xk − yk

2

√
−7− yk + 7xk

2

ã
= 2k+1.

In the first case, we find that

(xk+1, yk+1) =

Å
xk + yk

2
,
yk − 7xk

2

ã
is a possible solution to the equation 7x2

k+1 + y2k+1 = 2k+1. Meanwhile, the second
case tells us that

(xk+1, yk+1) =

Å
xk − yk

2
,
yk + 7xk

2

ã
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is another possible solution. It remains to show that at least one of those is an odd
positive integer solution.

By the inductive hypothesis, both xk and yk are odd, so it is clear to see that both
solutions produce integers. To confirm that at least one solution produces a pair of
odd integers, notice that xk+yk

2
+ xk−yk

2
= xk. Since those two quantities are integers

that add up to an odd integer xk, one of them must be odd. Now note that

xk + yk
2

− yk − 7xk

2
= 4xk =

xk − yk
2

+
yk + 7xk

2
.

Thus, in both ordered pairs, xk+1 and yk+1 must have the same parity (since
they add up to an even number). Combining these facts, we can see that one of
these possible solutions will return two odd integers. Since our expression involves
squares, we can just take their absolute values so that they are both positive.

This completes the proof by induction on n.
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Problem 5. Let r1, r2, . . . , r20 be the roots of the polynomial x20 − 7x3 + 1. If

1

r21 + 1
+

1

r22 + 1
+ · · ·+ 1

r220 + 1

can be written in the form m
n
where m and n are relatively prime positive integers,

find m+ n.

Answer. 240

Solution. We will transform the polynomial P (x) = x20 − 7x3 + 1 to have roots
more similar to the forms in the desired summation. Do note that

P (x) =
20∏
i=1

(x− ri) .

First, we would like a new polynomial Q(x) to have roots r21, r
2
2, . . . , r

2
20, so

Q(x) =
20∏
i=1

(
x− r2i

)
=

20∏
i=1

(√
x− ri

)
·

20∏
i=1

(√
x+ ri

)
= P

(√
x
)
· (−1)20P

(
−
√
x
)

=
Ä
x10 − 7x

3
2 + 1

ä
·
Ä
x10 + 7x

3
2 + 1

ä
= x20 + 2x10 − 49x3 + 1.

Then, the polynomial R(x) having roots r21+1, r22+1, . . . , r220+1 is simply Q(x−1).
We now want to find the sum of the reciprocals of the roots of R(x). This can be
done in a number of ways, but most directly, if R(x) is written in standard form as
a20x

20 + · · ·+ a2x
2 + a1x+ a0, the answer is −a1

a0
. (This can be shown by reversing

the polynomial or as a general consequence of expanding the desired expression.)

We can find

a0 = R(0) = Q(−1) = (−1)20 + 2(−1)10 − 49(−1)3 + 1 = 1 + 2 + 49 + 1 = 53.

To find the value of a1, we note that each term of the form an(x− 1)n contributes
an x term of an · x · (−1)n−1 ·

(
n
1

)
. Since

R(x) = Q(x− 1) = (x− 1)20 + 2(x− 1)10 − 49(x− 1)3 + 1,

we get a total coefficient of

(−1)19 · 20 + 2 · (−1)9 · 10− 49 · (−1)2 · 3 = −20− 20− 147 = −187.

The answer is then −−187
53

= 187
53
, so m+ n = 187 + 53 = 240 .
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2 Solo Relay!

We start with Problem 8, since its answer gives us the most information.

Problem 6. Let A be the answer to Problem 9. If the value of
∞∑

x=A

1

x2 − Ax+ (3A− 3)

can be expressed as 1
n
, where n is a positive integer, find n.

Solution. From our work on Problem 9, we know that A is either 4 or 13. Thus,
the sum we have to evaluate is either

∞∑
x=4

1

x2 − 4x+ 9
or

∞∑
x=11

1

x2 − 11x+ 30
.

We can notice that
1

x2 − 11x+ 30
=

1

x− 6
− 1

x− 5
,

so
∞∑

x=11

1

x2 − 11x+ 30
=

∞∑
x=11

1

x− 6
− 1

x− 5

=
∞∑
x=6

1

x− 1
− 1

x

=
1

5
+

∞∑
x=6

1

x
−

∞∑
x=6

1

x

=
1

5
.

Because we cannot perform partial fraction decomposition on 1
x2−4x+9

to produce
a telescoping sum, it seems unlikely that A = 4 is the correct answer. We can
confirm this by showing that

∑∞
x=4

1
x2−4x+9

> 1
3
, so if A = 4 was the correct answer,

then n must be 1 or 2. After that, we can confirm that these values of n will not
yield an answer less than 10 for Problem 7.

Thus, we find that the answer to Problem 9 was 11, so the answer to Problem 8
was 4. Since the summation evaluates to 1

5
, we find that n = 5 .

Problem 7. Let B be the answer to Problem 6. Valentines’ Day chocolates come
in mutually indistinguishable packs of B chocolates and mutually indistinguishable
packs of B+3 chocolates. How many ways are there to buy exactly 100 chocolates?

Solution. We have that B = 5, so we want to find the number of nonnegative
integer solutions (x, y) to 5x+ 8y = 100. Note that it must be true that

100− 8y ≡ 0 (mod 5),

which means that y must be divisible by 5 as well. Since x and y are integers, we
also have that 8y ≤ 100, so the only possible values of y are 0, 5, and 10. Indeed,
we can confirm that there are 3 solutions: (20, 0); (12, 5); and (4, 10).
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Problem 8. Let C be the answer to Problem 7. (It is given that C < 10.) Find
the tens digit of the 1000th smallest positive integer that doesn’t contain C as a
digit.

Solution. Since we are looking for the 1000th smallest positive integer that doesn’t
contain C as a digit, we are essentially working with a modified version of base 9
(since we only have access to 9 digits). However, the set of 9 digits may vary based
on the value of C, that is, the digit that is eliminated from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
We can observe that

1000 = 729 + 3 · 81 + 3 · 27 + 1 = 93 + 3× 92 + 3× 9 + 1 = 13319

in standard base 9. However, the digits may change depending on the value of C.
In base 9, the digit removed is 9, which causes the tens digit to be 3. Similarly, if
4 ≤ C ≤ 9, then the tens digit will still be 3. However, if 1 ≤ C ≤ 3, the removed
digit will cause the number in the tens digit to shift up and be 4 instead. Lastly, if
C = 0, the base 9 representation is shifted up one to 13329, since the nonpositive
integer 0 is not omitted in this case. This still gives us a tens digit of 3. These are
the only three possible cases, so we have narrowed down the fact that the answer
is either 3 or 4 .

Since we got that the answer to Problem 7 was 3, the answer to this question is
4 . This is consistent with the information we have previously obtained.

Problem 9. Let D be the answer to Problem 8. Ashley rolls a 2D-sided fair die,
as well as two D-sided fair dice. If the probability that the sum of the numbers
rolled by the two D-side dice is less than the value rolled by the 2D-sided die can
be expressed as p

q
, where p and q are relatively prime positive integers, find p+ q.

(Assume the n sides of an n-sided fair die are numbered from 1 to n.)

Solution. From our analysis on Problem 8, we know that either D = 3 or D = 4,
so we can look at each of those cases.

If D = 3, then Ashley is rolling a 6-sided fair die and comparing the value
to the sum of the values rolled by two fair 3-sided dice. We can draw the following
table for the results when two 3-sided dice are rolled:

PPPPPPPPPDie 2
Die 1

1 2 3

1 2 3 4
2 3 4 5
3 4 5 6

Thus, for each possible sum of the two dice rolls, we multiply by the probability
we roll a larger value on the 6-sided die. Thus, the desired probability is

1

9
· 4
6
+

2

9
· 3
6
+

3

9
· 2
6
+

2

9
· 1
6
+

1

9
· 0
6
=

1

3
,

since there is a 1
9
probability the two rolls sum to 2 and a 4

6
probability of rolling a

number greater than 2 on a 6-sided die, etc. In this case, p+ q=4.
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If D = 4, then Ashley is rolling an 8-sided die, and comparing the value rolled to
the sum of the values rolled by two fair 4-sided dice, which has the following table
of results:

PPPPPPPPPDie 2
Die 1

1 2 3 4

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8

We can again evaluate the desired probability to be

1

16
· 6
8
+

2

16
· 5
8
+

3

16
· 4
8
+

4

16
· 3
8
+

3

16
· 2
8
+

2

16
· 1
8
+

1

16
· 0
8
=

3

8
,

and in this case p+ q = 11.
Thus, the answer is either 4 or 11. Later, we will be able to deduce that the

answer is indeed 11 .

Solution. For an alternate solution using symmetry, let A be the random variable
representing the sum obtained from the two D-sided dice, and B be the random
variable representing the sum obtained from the 2D-sided die. Considering the
bijection from A to A− 1,

P (A > B) = P (A− 1 ≥ B).

However, considering another bijection from A to 2D + 1− A,

P (A > B) = P (2D + 1− A < B) = P (A− 1 < B),

as the probability distribution of A is symmetric around D + 1
2
. Therefore,

2P (A > B) = P (A− 1 ≥ B) + P (A− 1 < B) = 1,

so P (A > B) = 1
2
. To find P (A < B), we simply need to find P (A = B). This is

easy, however, as the two D-sided dice must roll a value between 2 and 2D, and
the 2D-sided die has a 1

2D
chance to match the value. Therefore,

P (A < B) = 1− P (A > B)− P (A = B) = 1− 1

2
− 1

2D
=

D − 1

2D
.

For D = 3 or D = 4 as given by Problem 8, we get the probability 1
3
or 3

8
.

The answers to this section are tabulated below.

Problem Number 6 7 8 9
Answer 5 3 4 11
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