
Stuyvesant Team Contest: Solutions

Spring 2021

Problem 1. [6] The number 2111x is divisible by exactly one 1-digit number d, where x is a digit. What is d?

Answer. 1 Proposed by Rishabh Das

Solution. Every positive integer is divisible by 1, so if a number is divisible by exactly one single digit number, it
must be 1.

Problem 2. [6] If a+ b = 2021 and ab+ b2 = 20210, compute a+ b2.

Answer. 2111 Proposed by Rishabh Das

Solution. The second equation can be rewritten as

b(a+ b) = 20210 =⇒ 2021b = 20210,

so b = 10. This means a = 2021− 10 = 2011, so a+ b2 = 2111.

Problem 3. [7] An isosceles triangle ABC has one angle equal to two times another angle. What is the sum of
all possible values of ∠A, in degrees?

Answer. 243 Proposed by Rishabh Das

Solution. The angles of the triangle are either 2x, 2x, x or x, x, 2x. In the first case, 5x = 180◦, so x = 36◦. Then
∠A can either be 36◦ or 72◦. In the second case, 4x = 180◦, so x = 45◦. Then ∠A can either be 45◦ or 90◦.
Overall, the sum of the four cases is 36◦ + 72◦ + 45◦ + 90◦ = 243◦.

Problem 4. [7] How many distinct four-digit numbers are there whose digits are a permutation of the digits of
2021 (including 2021 itself)?

Answer. 9 Proposed by Rishabh Das

Solution. There are 24
2 = 12 permutations of the digits 2, 0, 2, 1. In 1

4 of these, 0 will be the first digit, thus making
the number not have four digits. Subtracting these off, there are 12− 3 = 9 such numbers.

Problem 5. [8] If x, y, and z are real numbers such that

(x+ y)z = 16,

(y + z)x = 21, and

(z + x)y = 25,

then compute x2 + y2 + z2.

Answer. 38 Proposed by Rishabh Das

Solution. Adding all of the equations yields

2(xy + yz + zx) = 62 =⇒ xy + yz + zx = 31.

Now subtracting each of the original equations from this gives xy = 15, yz = 10, and zx = 6. From here,
multiplying these three equations gives

x2y2z2 = 15 · 10 · 6 = 302 =⇒ xyz = ±30.

Dividing this by our three new equations gives z = ±2, x = ±3, and y = ±5. The answer is 22 + 32 + 52 = 38.
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Problem 6. [8] If a, b, c, d, and e are positive integers satisfying

abcd : abce : abde : acde : bcde = 1 : 2 : 3 : 4 : 5

then find the smallest possible value of a+ b+ c+ d+ e.

Answer. 137 Proposed by Rishabh Das

Solution. After dividing each of the terms on the left by abcde, the result is

1

e
:

1

d
:

1

c
:

1

b
:

1

a
= 1 : 2 : 3 : 4 : 5.

Reciprocating all terms,

e : d : c : b : a = 1 :
1

2
:

1

3
:

1

4
:

1

5
.

Multiplying each of the terms on the right by 60, we see

e : d : c : b : a = 60 : 30 : 20 : 15 : 12.

The smallest possible value of a+ b+ c+ d+ e is 60 + 30 + 20 + 15 + 12 = 137.

Problem 7. [9] Equilateral triangle ABC has side length 1. Points A1 and A2 are selected on side BC such that
BA1 = CA2 = x, where x < 1

2 . Points B1, B2, C1, and C2 are defined similarly. Lines A1B2, B1C2, and C1A2

define another triangle, with area 1
4 of the area of ABC. Compute x.

A

B CA1 A2

B1

B2C1

C2

x x

x

xx

x

Answer.
1

6
Proposed by Rishabh Das

Solution. The side length of the green triangle will be
√

1
4 = 1

2 the side length of 4ABC, or just 1
2 . 4BC1A2 is

equilateral, so BA2 = A2C1. This means

1− x =
1

2
+ 2x,

so x =
1

6
.

Problem 8. [9] There are n consecutive positive integers, each of which can be written as the sum of two primes.
What is the maximum possible value of n?

Answer. 7 Proposed by Rishabh Das
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Solution. There must be at least
⌊
n
2

⌋
consecutive odd numbers in the n consecutive numbers.

There exists no set of 4 consecutive odd numbers that are all prime; one of them would have to be divisible by 3,
and if we included 3 then the farthest we can go is 3, 5, 7 since 9 is not prime.

Moreover, an odd number k can only be written as the sum of two primes if k − 2 is prime, since one of the two
numbers will have to be even, and we would have to write it as (k − 2) + 2.

Thus, at most 3 consecutive odd numbers can be written as the sum of two prime numbers, making n at most 7.

A construction is 4, 5, 6, 7, 8, 9, 10, which falls out of the work done above.

Remark. Note that after these 7, we can never reach 6 again. We would need both the Goldbach Conjecture and
the Twin Prime Conjecture to prove that we can reach 5 infinitely many times.

Problem 9. [10] There is a unique quadruple (p, q, r, s) of prime numbers such that

pqrs+ pqr + pq + p = 2021.

Compute p+ 2q + 3r + 4s.

Answer. 78 Proposed by Rishabh Das

Solution. Since p divides 2021 = 43 · 47, p is either 43 or 47.

If p is 43, then dividing both sides by 43 yields

qrs+ qr + q + 1 = 47 =⇒ qrs+ qr + q = 46.

Then q divides 46, so q is either 2 or 23. However, q = 23 is far too large, so we must have q = 2. Then
rs+ r + 1 = 23 =⇒ r(s+ 1) = 22, which has no solutions.

Thus, p = 47. Dividing both sides by 47 yields

qrs+ qr + q + 1 = 43 =⇒ qrs+ qr + q = 42.

Then q divides 42, so q is either 2, 3, or 7. If q = 2, then r(s+ 1) = 20, which only has the solution r = 5, s = 3.
If q = 3, then r(s+ 1) = 13, which has no solution. Finally, if q = 7 then r(s+ 1) = 5, which has no solution.

Thus, p = 47, q = 2, r = 5, and s = 3. The final answer is 47 + 2 · 2 + 3 · 5 + 4 · 3 = 47 + 4 + 15 + 12 = 78.

Problem 10. [Up to 10] Pick a real number from 0 to 20, inclusive. If there are n submissions a1, a2, . . . , an

and your submission is X, then your score will be

⌊
5 ·max

{
2.1−

∣∣∣∣∣X −
√
a21 + a22 + . . .+ a2n

n

∣∣∣∣∣, 0
}⌋

.

Answer. N.A. Proposed by Srinath Mahankali

The goal is to guess as close to the quadratic mean as possible. Since the quadratic mean is always at least the
arithmetic mean, we would expect the answer to be larger than 10. The actual value of X was 11.50925661.
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Problem 11. [11] Evaluate

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1− 1

1 +
1

1

.

(The number 1 appears 41 times in the above fraction.)

Answer.
89

144
Proposed by Rishabh Das

Solution. Let f(x) = 1− 1

1 + 1
x

. We want to compute

f10(1) = f(f(f(f(f(f(f(f(f(f(1)))))))))).

Let Fk denote the kth Fibonacci number. We claim

f

(
Fk
Fk+1

)
=
Fk+1

Fk+2
.

Indeed,

f

(
Fk
Fk+1

)
= 1− 1

1 + 1
Fk/Fk+1

= 1− 1

1 +
Fk+1

Fk

= 1− 1

Fk+2/Fk
= 1− Fk

Fk+2
=
Fk+1

Fk+2
.

Then

f10(1) = f10
(
F1

F2

)
=
F11

F12
=

89

144
.

Problem 12. [11] Mr. Sterr rolls three six-sided dice. He sums the results of the first two dice, and multiplies
that by the result of the third die. What is the probability that the number he obtains is a multiple of 8?

Answer.
17

72
Proposed by Theo Schiminovich

Solution. We do casework on the sum of the first two dice.
There is a 4

36 chance that the sum of the first two dice is 8, and then no matter the result of the last die, the
resulting number is a multiple of 8. This case gives 24

216 .
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There is a 3+1
36 chance that the sum of the first two dice is 4 or 12 and then a 3

6 chance the last die is even. This
case gives 18

216 .

There is a 1+5+3
36 chance that the sum of the first dice is 2, 6, or 10 and then a 1

6 chance the last die is 4. This case
gives 9

216 .

Overall, the probability is 24+18+9
216 = 51

216 = 17
72 .

Problem 13. [12] Let ABCD be a convex quadrilateral satisfying AB = 34, BC = 39, CD = 45, DA = 20, and
BD = 42. What is AC2?

Answer. 2929 Proposed by Srinath Mahankali

Solution. Let X and Y be the feet from A and C to BD, respectively.

A

C

B D
X

Y

34 20

39 45

15 15
12

36

16

By the fact that 4BCD is a 13 − 14 − 15 triangle scaled up by a factor of 3 (or by using Heron’s formula to
find the area, and then find CY ) we see CY = 12 · 3 = 36. This gives BY = 15 and Y D = 27, by either the
Pythagorean theorem or by noting well-known right-triangles.

We can use a similar process to find AX,BX, and DX. We can either use Heron’s formula to find the area of
the triangle and then get AX, or note that the triangle is just putting a 16− 30− 34 triangle and a 12− 16− 20
triangle together. We get AX = 16, BX = 30, and XD = 12.

Then XY = 15, and then the vertical distance between A and C is 16 + 36 = 52. Then AC2 = 152 + 522 =
225 + 2704 = 2929.

Problem 14. [12] In 4ABC0, AB = 13, BC0 = 14, and AC0 = 15. A point B0 is chosen on segment AB such
that ∠B0C0B = 30◦. For all n ≥ 1, Cn and Bn are chosen on segments AC and AB, respectively, such that
∠Cn−1Bn−1Cn = 60◦ and ∠Bn−1CnBn = 60◦.

A

B C0

B0

C1

B1

C2
B2
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Compute
∞∑
i=0

CiBi +BiCi+1,

the length of the red path.

Answer. 24 Proposed by Rishabh Das

Solution. Note that CiBi and BiCi+1 are always twice the length of their projection onto the A-altitude. Thus,
the answer is just twice the A-altitude, which is 2 · 12 = 24.

Problem 15. [13] A word is called semi-palindromic if the word and the word written in reverse have at least 50%
of the corresponding letters in common. For example, ABWXY ZBA and ABCXY CBA are semi-palindromic,
but AWXY ZPQA is not. How many permutations of the word MATHTEAM are semi-palindromic?

Answer. 336 Proposed by Theo Schiminovich

Solution. The word MATHTEAM contains 2 Ms, 2 As, 2 T s, 1 H, and 1 E. Thus, we require either 4 or 6
letters in the permutation and its reverse to be the same.

If we have 6, then H and E must be in opposing positions in the string, and the rest of the common letters must
be in opposing pairs. There are 4 · 2 ways to choose where H and E go, and then 3! ways to choose the rest,
resulting in 48 total permutations.

Otherwise, we have 4 letters in the permutation and its reverse to be in common. There are
(
3
2

)
ways to choose

which letters are in common, and 4 · 3 ways to choose where they go. There are
((

4
2

)
− 2
)
· 2 = 8 ways to choose

the rest of the letters. In total, there are 288 total permutations that work in this case.

Overall, there are 336 permutations that work.

Problem 16. [13] How many sequences of length 7 consisting of the letters A,B,C, and D have the same number
of As and Bs?

Answer. 3432 Proposed by Max Vaysburd

Solution 1. Suppose there are k As and k Bs, where 0 ≤ k ≤ 3. Then there are
(
7
2k

)
ways to choose where the As

and Bs go,
(
2k
k

)
ways to choose which of these are As and which of these are Bs, and 27−2k ways to choose which

of the remaining letters are C and which are D. Thus, the answer would be

3∑
k=0

(
7

2k

)(
2k

k

)
27−2k,

which we compute as 1 · 1 · 128 + 21 · 2 · 32 + 35 · 6 · 8 + 7 · 20 · 2 = 128 + 1344 + 1680 + 280 = 3432.

Solution 2. We use a generating function. For each spot in the sequence, represent A by x, B by 1
x , and both C

and D by 1. Then we want the constant in
(
x+ 2 + 1

x

)7
, which is equal to the x7 coefficient of

(x2 + 2x+ 1)7 = (x+ 1)14,

which is
(
14
7

)
= 3432.

Solution 3. Make a 2× 7 table, and select an equal number of cells from both rows. Construct a string as follows:

• if cell (i, 1) was selected but not cell (i, 2), then let the ith character be A;

• if cell (i, 2) was selected but not cell (i, 1), then let the ith character be B;

• if both cells (i, 1) and (i, 2) were selected, then let the ith character be C; and

• if neither cells (i, 1) nor (i, 2) were selected, then let the ith character be D.
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Because we selected an equal number of cells from each row, there are an equal number of As and Bs in the
resulting string. Conversely, from any string we can construct a valid selection of cells. Thus, we have formed a
bijection.

X X X X

X X X X

C A B D C A B

Color 7 of the 14 cells green. If a cell in the top row is green, then select it, and if a cell in the bottom row is not
green, then select that one. This results in an equal number of cells from each row being selected as well, and is
also reversible. Thus, the answer to the original problem is

(
14
7

)
, since we had established a bijection.

Problem 17. [14] Triangle ABC has AB = AC. Points D,E, and F are picked on segments BC,CA, and AB,
respectively, such that

4ABC ∼ 4AFE ∼ 4FED ∼ 4DAC.

If CD = 1, compute BD.

A

B CD

EF

Answer.
−1 +

√
5

2
Proposed by Rishabh Das

Solution. Suppose that in all of the similar triangles, the ratio of the legs to the base is a.

Note that ∠BDF = 180◦ − 2∠ACB = ∠BAC, so 4DBF is similar to the four triangles listed in the problem

By our definition of a, DE = EC = a, EF = FD = BD = a2, and AE = a3, so AC = a + a3 = CD
a = 1

a . Thus,

a4 + a2 − 1 = 0, so a2 = −1+
√
5

2 . Since BD = a2, this is the answer.

Problem 18. [14] There are two armies with 10 soldiers each. Every battle, one soldier dies, where the soldier is
selected at random between all the alive soldiers. The war ends once one army has no soldiers left. Compute the
expected number of soldiers left in the winning army.

Answer.
20

11
Proposed by Max Vaysburd

Solution 1. Label the armies A and B. Notice that the process is the same as choosing a random permutation of
10 As and 10 Bs, and finding the expected value of the length of the contiguous substring at the end. For example,
in the sequence

AABBBABABAAAABBAABBB,

army B wins with 3 soldiers in the end, since the last three letters of the sequence are all B.

Without loss of generality, say that army A wins the war. Then in our sequence, A will be the last letter in the
sequence. Of the remaining 19 letters, 10 of them will be B and 9 of them will be A. Thus, we need to distribute
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9 As into 11 slots: before the first B, between the first and second Bs, between the second and third Bs, . . . ,
between the ninth and tenth Bs, and after the tenth B. Since each A has an equal probability of being in each
slot, we expect 9

11 of them to end up in the last slot. Adding the the last soldier at the end, we expect army A to
win with 20

11 soldiers.

Solution 2. We define the sequences similar to the above solution, and again assume that A wins the army, with
k soldiers. Then right before these k As, there must be a B. Before this, there are 10− k As and 9 Bs, which can
be arranged in

(
19−k
9

)
ways. Thus, we want to compute the sum

10∑
k=1

k

(
19− k

9

)
(

19

9

) ,

since there are
(
19
9

)
total ways to arrange the letters such that A is the last letter.

We focus on computing the numerator of this expression. It is equal to

10∑
k=1

(
k∑

m=1

(
19−m

9

))
.

By the Hockey-Stick Identity, this is equal to

10∑
k=1

(
20− k

10

)
=

(
20

11

)
=

(
20

9

)
.

Then the fraction is equal to (
20
9

)(
19
9

) =
20!

9!·11!
19!

9!·10!
=

20

11
.

Problem 19. [15] A function f whose domain is the positive integers satisfies

f(n) =


1 if n = 1,

3f(n/2) if n is even, and

2f(n− 1) if n is odd and larger than 1.

How many values less than 2021 does f(x) take on over all x ∈ N?

Answer. 21 Proposed by Theo Schiminovich

Solution. We write a sequence of integers, where we subtract one at an odd number, and divide by two at an even
number, until we get 1. For example, starting at 19:

19 −→ 18 −→ 9 −→ 8 −→ 4 −→ 2 −→ 1.

We claim that for any integer n, we use at least as many “divide by two” operations as “subtract one” operations.
The reason for this is because every time we use a “subtract one” operation, it will always be immediately followed
by a “divide by two” operation. Thus, the prime factorization of f(n) will always have at least as many powers of
3 as powers of 2. For example:

19
×2−→ 18

×3−→ 9
×2−→ 8

×3−→ 4
×3−→ 2

×3−→ 1,

so

f(19) = 2 · f(18) = 2 · 3 · f(9) = 22 · 3 · f(8) = 22 · 32 · f(4) = 22 · 33 · f(2) = 22 · 34 · f(1) = 22 · 34.
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Thus, the range of f consists of numbers of the form 2a3b, where a ≤ b. We now claim all such numbers are in
the range of f . Take n = 2b−a(2a+1 − 1). Then

f(n) = 3b−af(2a+1− 1) = 2 · 3b−a · f(2a+1− 2) = 2 · 3b−a+1 · f(2a− 1) = · · · = 2a · 3b−1 · f(2) = 2a · 3b · f(1) = 2a3b,

so 2a · 3b where a ≤ b is in the range of f .

Now we want to calculate how many numbers at most 2021 can be written as 2a · 3b where a ≤ b. Let b = a+ c,
where a ≥ 0. Then

2a3b = 2a3a+c = 3c6a,

so we just want the integers at most 2021 that can be written as a product of a power of 3 and a power of 6.
When the power of 6 is 1, the power of 3 is anything from 1 to 729, giving 7 numbers.
When the power of 6 is 6, the power of 3 is anything from 1 to 243, giving 6 numbers.
When the power of 6 is 36, the power of 3 is anything from 1 to 27, giving 4 numbers.
When the power of 6 is 216, the power of 3 is anything from 1 to 9, giving 3 numbers.
When the power of 6 is 1296, the power of 3 must be 1, giving 1 number.
No larger powers of 6 can work, so the answer is 7 + 6 + 4 + 3 + 1 = 21.

Problem 20. [Up to 64] Welcome to USAYNO!
Instructions: Submit a string of 6 letters corresponding to each statement: put T if you think the statement is true,
F if you think it is false, and X if you do not wish to answer. You will receive 2n points for n correct answers,
but you will receive 0 if any of the questions you choose to answer is answered incorrectly. Note that this means
if you submit “XXXXXX” you will get one point.
(1) There exists a subset S of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} of size 4 such that the sum of the elements of any nonempty

subset of S is not a multiple of 10.
(2) There exists a positive integer N such that for any integer n ≥ N , a cube can be filled in with n non-overlapping
cubes, not necessarily of the same size.
(3) There is an angle α such that there is a nonempty but finite collection of triangles which are not similar to

each other, have integer side lengths, and have α as one of its angles.
(4) For any connected graph, there is always a walk which visits each edge exactly twice. (A walk on a graph is

a sequence of moves from a vertex to an adjacent vertex.)
(5) In tetrahedron ABCD, the inradius of each face is equal. Then the tetrahedron must be isosceles, i.e.
AB = CD,BC = DA, and AC = BD.
(6) There exists a function f : N→ N that is strictly increasing such that f(f(n)) = n2 for all n ∈ N.

Answer. TTFTFT Proposed by Rishabh Das, Srinath Mahankali, and Max Vaysburd

Solution. The answer is TTFTFT.

(1) Take S = {2, 3, 4, 9}, for example.

(2) Call an integer n good if we can fill a cube with exactly n non-overlapping cubes. Note that if n is good, then
take one of the n cubes and split it into 8 cubes. This means that n+ 7 is good. Similarly, n+ 26 is good, since
we can split a cube into 27 cubes.
Now, since 1 is good, we can construct 1 + 7k + 26` for any k, ` ≥ 0. Since 7k + 26` takes on all values at least
(7− 1)(26− 1) = 150 by the Chicken McNugget Theorem, 1 + 7k + 26` takes on all values at least 151. Thus, we
can take N = 151.

(3) Note that if the condition were to be true, we would need cosα to be rational. Let cosα = k, a rational
number between −1 and 1, exclusive.
By the Law of Cosines,

c2 = a2 + b2 − 2abk =⇒
(a
c

)2
+
(b
c

)2
− 2
(a
c

)(b
c

)
k = 1.

Letting x = a
c and y = b

c , x
2 + y2 − 2xyk = 1. We will show that there are infinitely many rational points on

this ellipse, which would then show, after scaling each such point appropriately, that there are infinitely many
nonsimilar triangles containing α as an angle.
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Note that (1, 0) lies on the ellipse. Take a line through (1, 0) with rational slope, y = mx−m. Replacing this in
the equation of our ellipse gives a quadratic equation in x with rational coefficients. However, we already know
that 1 is a root of this quadratic, so by Vieta’s formulas there exists another rational root of this quadratic. If
the x-coordinate is rational, from y = mx−m we see the y-coordinate is also rational, so this is a rational point.
Repeating this for infinitely many values of m gives the desired claim.

(4) Draw the same graph, except draw two copies of each edge. Then the graph is connected and each vertex has
even degree, so there exists a Eulerian Cycle through the vertices. Tracing this cycle on our original graph gives
the desired walk.

(5) Suppose that AB = BC = CA = BD = CD = 1, and AD = x. Let f(x) denote the inradius of a triangle

with side lengths 1, 1, and x. If we find an x for which f(x) =
√
3
6 and x 6= 1, then AD 6= BC but the inradius of

each face is
√
3
6 .

Note f(0) = f(2) = 0, so as long as x = 1 is not a maxima of f there must be another point in the range [0, 2] for
which f(x) = f(1). We will show f(

√
2) > f(1), which would imply that x = 1 is not a maxima, so the conclusion

would follow.
√

2 produces a 1 − 1 −
√

2 right triangle, which has inradius 1+1−
√
2

2 = 2−
√
2

2 . We can show that
2−
√
2

2 >
√
3
6 by using

√
2 < 1.42 and

√
3 < 1.72. Thus, there exists an x 6= 1 such that f(x) = f(1), as desired.

In fact x = 3+
√
33

6 .

(6) We claim that the function

f(n) =


1 if n = 1,

3 if n = 2,

[f−1(n)]2 if n ∈ Im(f), and

f(n− 1) + 1 otherwise

works, where f−1 is the inverse of f and Im(f) is the range of f . Just as a demonstration, here are the first few
values of f(n):

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

f(n) 1 3 4 9 10 11 12 13 16 25 36 49 64 65 66 81

The condition f(f(n)) = n2 is clearly satisfied. We are left to show that this is strictly increasing. We will prove
the following stronger claim by strong induction: for all positive integers at least 2, 0 < f(n)− f(n− 1) < 2n.
The base case of n = 2 is given to us for free.
Assume that for 2 ≤ k ≤ n− 1, 0 < f(k)− f(k − 1) < 2k.
Call an integer a good if it is in the range of f , and bad otherwise. If n is bad, then f(n) − f(n − 1) = 1, so the
inductive step would hold.
Otherwise, suppose n is good. Suppose t is the smallest positive integer such that n− t is good. If f(a) = n, then
from the strictly increasing induction hypothesis we must have f(a − 1) = n − t. Then f(n − t) = (a − 1)2, and
then f(n− 1) = (a− 1)2 + t− 1. This means

f(n)− f(n− 1) = [a2]− [(a− 1)2 + t− 1] = 2a− t.

We know t > 0, so 2a− t < 2a < 2n, so f(n)− f(n− 1) < 2n. We are left to show f(n)− f(n− 1) > 0. From the
inductive hypothesis,

f(a)− f(a− 1) = t < 2a,

so 2a− t > 0. Thus, the inductive step holds in this case as well.
Thus, this function f satisfies the conditions of the problem.

Problem 21. [16] How many ways are there to tile a 5× 5 board with eight 1× 3 pieces and a 1× 1 piece such
that no two pieces overlap?

Answer. 2 Proposed by Rishabh Das

Solution. There are only two. Color the board in two ways, as follows:
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Note that each 1 × 3 piece will have one cell of each of the three colors. Thus, since there are 9 red cells in the
first diagram on only 8 green and blue cells, the 1× 1 piece must be on a red cell. Similarly, the 1× 1 piece must
be on a red cell in the second diagram. However, the only cell that is red on both diagrams is the center cell, so
the 1× 1 cell must go in the center cell.

We now focus on the two cells below the center cell. They clearly cannot be covered with vertical 1× 3 pieces, so
they must be covered by two distinct horizontal 1×3 pieces. Moreover, if the two 1×3 pieces are not aligned with
each other, then there will be cells in the bottom two rows that are unfilled. Thus, these two 1× 3 pieces will be
aligned with each other. There are three possible locations for these two pieces. The first case is when they are
both in the middle.

It’s not too difficult to see that from the scenario on the left, we are forced into the scenario on the right, which
doesn’t work. Thus, we are left with the other two cases. They are symmetric, and moreover it is not too difficult
to see that you are forced into one of the following two scenarios:

which both work, so the answer is 2.

Problem 22. [16] A modified Pascal’s Triangle follows the following rules:

• It starts with Row 0;

• Row n consists of n+ 1 numbers, the first and last of which are both n; and

11



• Every other number is equal to the sum of the two numbers above it.

Here are the first few terms of the triangle:

0

1 1

2 2 2

3 4 4 3

4 7 8 7 4

Row 0

Row 1

Row 2

Row 3

Row 4

Compute the sixth number in the 16th row.

Answer. 9828 Proposed by Rishabh Das

Solution. We claim that the kth number in the nth row is
(
n
k−2
)

+
(
n
k

)
. Indeed, after making this claim, it is easy

to prove with induction, along with Pascal’s identity. Here are a couple of ways to motivate this claim.

Let fn(x) be the generating function for the nth row. Then

fn+1(x) = fn(x) + xfn(x) + xn+1 + 1 = (x+ 1)fn(x) + (xn+1 + 1).

This recursion gives

fn(x) =

n−1∑
m=0

(1 + x)m(1 + xn−m).

The coefficient of xk−1 is then

n−1∑
m=0

(
m

k − 1

)
+

(
m

m− (n+ 1− k)

)
=

n−1∑
m=0

(
m

k − 1

)
+

(
m

n+ 1− k

)
.

By the Hockey-Stick identity, this is equal to (
n

k

)
+

(
n

k − 2

)
,

as desired.

Another way to derive the main claim is to notice that the given triangle is the superimposition of two (regular)
Pascal Triangles, one shifted to the left and one shifted to the right.

0

1 1

2 1+ 1 2

3 3+ 1 1+ 3 3

4 6+ 1 4+ 4 1+ 6 4

1

1

1

1

1

1

1

1

1

1

The red terms (in the red triangle) form Pascal’s Triangle, and the blue terms (in the blue triangle) form another
Pascal’s Triangle. The terms in the black triangle are the terms of the original triangle. Writing the terms in this
way immediately gives

(
n
k

)
+
(
n
k−2
)
.

With the given numbers, the desired term is
(
16
6

)
+
(
16
4

)
= 9828.

12



Problem 23. [17] Let p = 2017 and let f(x) be a polynomial with integer coefficients and degree at most p− 1
such that f(x + p) ≡ f(x) + px2 (mod p2) for all integers x. If f(0) = 2016, compute the sum of all possible
remainders when f(1) is divided by p.

Answer. 1344 Proposed by Srinath Mahankali

Solution. Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

where n ≤ p− 1. Then

f(x+ p) =
n∑
k=0

ak(x+ p)k ≡
n∑
k=0

ak(x
k + pkxk−1) (mod p2)

from the binomial theorem. Then

f(x+ p) ≡

[
n∑
k=0

akx
n

]
+ p

[
n∑
k=1

kakx
k−1
]
≡ f(x) + p

[
n∑
k=1

kakx
k−1
]

(mod p2).

(In fact, the bracketed term might be recognized as f ′(x).) Thus,

p

[
n∑
k=1

kakx
k−1
]
≡ px2 (mod p2) =⇒

[
n∑
k=1

kakx
k−1
]
≡ x2 (mod p).

From here it is easy to see that a3 ≡ 1
3 (mod p) and every other coefficient (besides potentially a0) is 0. More

formally, let the bracketed term be g(x). Then g(x)− x2 is a polynomial with p roots and degree at most p − 1,
so g(x) must just be x2, which gives the previous claim.

Now f(x) ≡ 1
3x

3 + a0 (mod p). Looking at f(0), we see a0 = −1. Thus, f(x) ≡ 1
3x

3 − 1 (mod p). Note
1
3 ≡

4035
3 ≡ 1345 (mod 2017), so

f(1) ≡ 1

3
− 1 ≡ 1345− 1 ≡ 1344 (mod 2017) ,

so 1344 is the only possible value of f(1) (mod 2017).

Problem 24. [17] Let D be the intersection of tangents to the circumcircle of 4ABC at B and C. If AB = 20,
AC = 21, and the midpoint of AD lies on BC, compute BC.

Answer.
29
√

2

2
Proposed by Rishabh Das

Solution 1. Let M denote the midpoint of AB, and E be the midpoint of AD, which lies on BC.
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A

B C

D

E

M

We claim AMEC is cyclic. Note that ME is the A-midline of 4ABD, so ME ‖ BD. Thus

∠AME = ∠ABD = ∠B + ∠A = 180◦ − ∠C = 180◦ − ∠ACE,

so AMEC is indeed cyclic.

We now use power of a point with respect to B on (AMEC). Then

BM ×BA = BE ×BC =⇒ c

2
· c =

c2a

b2 + c2
· a =⇒ b2 + c2 = 2a2 =⇒ a =

√
b2 + c2√

2
.

With the given numbers, the answer is 29
√
2

2 .

Solution 2. The length of the altitude from A to BC, ha, is equal to the length of the altitude from D to BC, hd.

We know
1

2
bc sinA =

aha
2

=⇒ ha =
bc

a
sin∠A.

Additionally,

tan∠DBC =
hd
a/2

=⇒ hd =
a

2
tan∠A.

Equating the two,
bc

a
sin∠A =

a

2
tan∠A =⇒ bc

a
=

a

2 cos∠A
=⇒ 2bc cosA = a2.

Then by the law of cosines

a2 = b2 + c2 − 2bc cosA = b2 + c2 − a2 =⇒ a =

√
b2 + c2√

2
,

the same expression as before.

Solution 3. We use barycentric coordinates. Define E as before. We know E = (0 : b2 : c2). This means

D = 2 · E −A = 2 · (0 : b2 : c2)− (b2 + c2 : 0 : 0) = (−b2 − c2 : 2b2 : 2c2).
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However, D is supposed to lie on the perpendicular bisector of BC. The condition for a point (x : y : z) to lie on
the perpendicular bisector of BC is

a2(z − y) + x(c2 − b2) = 0.

Thus,

a2(2c2 − 2b2) + (−b2 − c2)(c2 − b2) = 0 =⇒ b2 + c2 = 2a2 =⇒ a =

√
b2 + c2√

2
,

the same expression as before.

Problem 25. [18] If a, b, x, and y are positive real numbers satisfying

a2 − a+ 1 = x2 and

b2 + b+ 1 = y2,

then let the maximum possible value of a+b
xy be M . Over all quadruples (a, b, x, y) for which a+b

xy = M , suppose
a+ b takes minimum value m. Compute M +m.

Answer.
5
√

3

3
Proposed by Rishabh Das

Solution 1. We begin by computing M . Draw a segment XY of length a+ b, and pick a point T on XY such that
Y T = b. Draw a segment of length 1 that forms a 60◦ angle with XY through T , TZ.

Y XT

Z

P
b a

xy 1 √
3
2

60◦

By the law of cosines, ZX = x and ZY = y. Also note that the altitude from Z in this triangle is
√
3
2 . Then

(a+ b)
√
3
2

2
=

1

2
xy sin∠XZY =⇒ a+ b

xy
=

2 sinXZY√
3

≤ 2
√

3

3
.

Equality holds whenever ∠XZY = 90◦, so M = 2
√
3

3 .

In a right triangle, the altitude to the hypotenuse is always at most half of the length of the hypotenuse. This can
be proven by inscribing the triangle in a circle. Thus,

XY = a+ b ≥ 2 ·
√

3

2
=
√

3

whenever a+b
xy = M . Equality can hold when x = y, so m =

√
3. The answer is

2
√

3

3
+
√

3 =
5
√

3

3
.

Solution 2. We begin by squaring the desired expression to get

(a+ b)2

x2y2
=

(a+ b)2

(a2 − a+ 1)(b2 + b+ 1)
=

16(a+ b)2

((2a− 1)2 + 3)((2b+ 1)2 + 3)
,
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where the last equality is derived by completing the square in both factors of the denominator. Now, make the
substitutions u = 2a− 1 and v = 2b+ 1, so we aim to minimize

16(a+ b)2

((2a− 1)2 + 3)((2b+ 1)2 + 3)
=

4(u+ v)2

(u2 + 3)(v2 + 3)
.

By the Cauchy-Schwarz inequality, (u2 + 3)(3 + v2) ≥ 3(u+ v)2, giving that

4(u+ v)2

(u2 + 3)(v2 + 3)
≤ 4

3
,

and equality is achieved when u√
3

=
√
3
v , or uv = 3. Thus, M2 = 4

3 , giving that M = 2
√
3

3 . Now, we must minimize

a+b given that (2a−1)(2b+1) = uv = 3. To do this, notice that it is enough to minimize 2a+2b = (2a−1)+(2b+1).
By the AM-GM inequality, equality holds when 2a− 1 = 2b+ 1 =

√
3, so a+ b =

√
3. Thus, m =

√
3 giving the

answer of M +m =
5
√

3

3
.

Problem 26. [18] Mr. Kats and Mr. Cocoros are playing a game an infinite number of times, where each game
results in a win for one player and a loss for the other. Mr. Cocoros has a 3

5 chance to win each game. They keep
track of their respective number of wins after each game. What is the probability that there exists a point in time
for which Mr. Kats has more wins than Mr. Cocoros?

Answer.
2

3
Proposed by Mario Tutuncu-Macias

Solution. Let p = 2
5 <

1
2 .

The first time Mr. Kats has more wins then Mr. Cocoros, they must have n + 1 wins and n wins, respectively,
for some n ≥ 0. We find the probability that Mr. Kats first leads in 2n + 1 games. We draw an up-right path
from (0, 0) to (n, n+ 1), where each time Mr. Kats wins we move up, and each time Mr. Cocoros wins we move
left. We are given that this path stays below y = x until it reaches (n, n), and then goes to (n, n+ 1). Here is an
example for n = 4.

Since the last move is fixed, we just need to get to (n, n), which is well-known to occur Cn times, the nth Catalan
number. Then the probability of this happening is

Cnp
n+1(1− p)n = p · Cn · (p− p2)n.

The overall probability is the sum of all of these numbers, i.e.

∞∑
n=0

p · Cn · (p− p2)n = p ·
∞∑
n=0

Cn(p− p2)n.

We now use the well-known generating function

C(x) =
∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
.
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Then we seek

pC(p− p2) = p · 1−
√

1− 4p+ 4p2

2(p− p2)
= p · 1− (1− 2p)

2p(1− p)
=

p

1− p
.

For p = 2
5 , the answer is 2

3 .

Problem 27. [19] How many 4-tuples of integers (a, b, c, d) are there such that 0 ≤ a, b, c, d ≤ 2016,

a2 + b2 + c2 + d2 ≡ 1 (mod 2017),

and

ab+ cd ≡ 0 (mod 2017)?

Answer. 4064256 or 20162 Proposed by Srinath Mahankali

Solution. Adding and subtracting two times the second congruence gives

(a+ b)2 + (c+ d)2 ≡ 1 (mod 2017) and (a− b)2 + (c− d)2 ≡ 1 (mod 2017) .

Note that from the values of a+ b (mod 2017) and a− b (mod 2017) we can uniquely recover a and b, and we get
the same thing for c and d. Thus, the problem reduces to finnding the number of solutions to

x2 + y2 ≡ 1 (mod 2017) and z2 + w2 ≡ 1 (mod 2017) .

We just compute the number of solutions to x2 + y2 ≡ 1 (mod 2017), and then square that.

Note that since 2017 ≡ 1 (mod 4), there exists a k for which k2 ≡ −1 (mod 2017). Replace y with ky. Then

x2 − y2 ≡ 1 (mod 2017) =⇒ (x+ y)(x− y) ≡ 1 (mod 2017) .

As long as x + y 6≡ 0 (mod 2017), we can uniquely find x− y (mod 2017), and then recover x and y. Thus, there
are 2016 solutions, making the final answer 20162 = 4064256.

Problem 28. [19] Akash participates in a competition with 700 students with three rounds: Algebra, Combina-
torics, and Number Theory. He is 40th place in all the three rounds, and no ties occur in the three rounds. For
every participant, a final score is calculated by adding the rankings from all three rounds, and an overall ranking
is calculated by ranking the scores in order, with lowest score being ranked first. A contestant with a lower score
will have a lower rank than a contestant with a higher score. Let M be the lowest numbered rank Akash can have
and let m be the highest possible numbered rank. What is m−M?

Answer. 77 Proposed by Srinath Mahankali

Solution. First of all, notice that the lowest numbered rank achievable is just first place; if the 39 people who
beat Akash on each round do very poorly on the other two rounds (i.e. bottom 100), then Akash will still end up
beating all of them. Thus, M = 1.

We seek m− 1, which is equal to the number of people who have a strictly lower final score than Akash. Replace
40 with n, and say k people beat Akash. We assume k > 40. Then we note two things:

• The maximum possible sum of scores of all people who beat Akash is (3n− 1)k, since each of the k people
who beat him will have a score of at most 3n− 1.

• For each subject, the sum of the ranks of the people who beat Akash is at least (k+1)(k+2)
2 − n, since this is

the sum of the smallest k positive integers that aren’t n, as rank n is taken up already.

These two combined gives

(3n− 1)k ≥ 3

(
(k + 1)(k + 2)

2
− n

)
.
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We can rearrange this as

3nk − k ≥ 3

(
k2 + 3k + 2

2
− n

)
3nk − k ≥ 3

2
k2 +

9

2
k + 3− 3n

6nk − 2k ≥ 3k2 + 9k + 3− 6n

0 ≥ 3k2 + (11− 6n)k + (6− 6n).

This is a quadratic in k. Note that −1 is not a root, but plugging in k = −1 will give −2. Thus, −1 is extremely
close to a root. By Vieta’s the other root is approximately

6n− 11

3
+ 1 = 2n− 8

3
.

(To be more rigorous, we may show that plugging in k = −5
3 gives a positive number, so there is a root between

−5
3 and 1, so the other root is between 2n− 8

3 and 2n− 2.) Thus, the largest k that satisfies the desired inequality
is the floor of this, which is 2n− 3. Thus, k ≤ 2n− 3.

We now provide a construction for 2n− 3. First, look at the following triples.

A C N

1 n+ 1 2n− 3
2 n+ 2 2n− 5
3 n+ 3 2n− 7
...

...
...

n− 2 2n− 2 3
2n− 2 n− 1 2
2n− 3 n− 2 4
2n− 4 n− 3 6

...
...

...
n+ 1 2 2n− 4
n− 1 1 2n− 1

This is a list of 2n− 3 triples, and the sum of the numbers in equal triple is 3n− 1. There exists an n in the last
column, however; replace that n with a 1. Then the sum of the numbers in each triple is at most 3n − 1. Thus,
letting the competitors rank in the shown places for the rounds will work, showing that k = 2n− 3 works.

Using n = 40 means the answer is 77.

Problem 29. [20] A semicircle with radius 1 is drawn, with diameter AB and center O. An ellipse is drawn
tangent to AB at O, and tangent to the semicircle at 2 distinct points X and Y such that XY ‖ AB. Compute
the maximum possible area of such an ellipse.

X Y

A BO

Answer.
2π
√

3

9
Proposed by Rishabh Das

Solution. Let the foci of the ellipse be F1 and F2.
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O

X Y

A B

F1

F2

We claim XF1OF2Y is cyclic. Draw the tangent to the semicircle at X, which is also the tangent to the ellipse at
X. From the reflective property of ellipses, we know that the perpendicular to this tangent through X, which is
XO, is the bisector of ∠F1XF2. Since O also lies on the perpendicular bisector of F1F2, by the incenter-excenter
lemma, O lies on the circumcircle of 4F1XF2. Thus, XF1OF2 is cyclic. Similarly, F1OF2Y is cyclic, so the claim
is proven.

By Ptolemy’s on OF1XF2,

(XF1 +XF2)×OF1 = F1F2 ×OX =⇒ 2 ·OF 2
1 = F1F2 = 2 · F1M,

where M is the midpoint of F1F2, i.e. the center of the ellipse. This means OF 2
1 = F1M . Note that OF1 is equal

to the semi-major axis, and MO is equal to the semi-minor axis. Let OF1 = x, so F1M = x2. Then

OM2 = OF 2
1 − F1M

2 = x2 − x4 =⇒ OM = x
√

1− x2.

Thus, the area of the ellipse is

π ·OM ×OF1 = π · x2
√

1− x2 = π · y
√

1− y,

where y = x2. By AM-GM:

y2(1− y) = 4 · y
2
· y

2
· (1− y) ≤ 4 ·

(
y/2 + y/2 + (1− y)

3

)3

=
4

27
=⇒ y

√
1− y ≤ 2

√
3

9
,

so the answer is
2π
√

3

9
. Equality holds when y = 2

3 , which does occur as x can range from 1
2 to 1, meaning y

ranges from 1
4 to 1.

Problem 30. [20] Given a polynomial f(x) with integer coefficients and an integer n, let α(f, n) be the number

of integers x satisfying 0 ≤ x < n and f(x) ≡ 0 (mod n). Let S(f) =

∞∑
n=0

α(f, n)

n2
. What is

S(x3 + x2 + x)

S(x3 − 1)
?

Answer.
89

83
Proposed by Srinath Mahankali

Solution. By the Chinese remainder theorem, for a fixed polynomial f , α(f,n)
n2 is a multiplicative function. Thus,

S(f) =
∏
p

[ ∞∑
i=0

α(f, pi)

p2i

]
.

We now show
α(x3 + x2 + x, pi) = α(x3 − 1, pi)

for any prime p 6= 3 and i > 0.
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If x3 + x2 + x ≡ 0
(
mod pi

)
, then x(x2 + x + 1) ≡ 0

(
mod pi

)
. If p | x, then p - x2 + x + 1, so either pi | x or

pi | x2 + x+ 1. This means
α(x3 + x2 + x, pi) = 1 + α(x2 + x+ 1, pi).

We can use a similar process for α(x3 − 1, pi). If x3 − 1 ≡ 0
(
mod pi

)
, then (x − 1)(x2 + x + 1) ≡ 0

(
mod pi

)
. If

x ≡ 1 (mod p), then x2 +x+ 1 ≡ 3 6≡ 0 (mod p) , since p 6= 3, which means pi | x−1 or pi | x2 +x+ 1. This implies

α(x3 − 1, pi) = 1 + α(x2 + x+ 1, pi).

Thus, α(x3 + x2 + x, pi) = α(x3 − 1, pi) for all primes p 6= 3.

We are left to compute α(x3 + x2 + x, 3i) and α(x3 − 1, 3i). Note our reasoning for x2 + x+ 1 still follows, i.e.

α(x3 + x2 + x, 3i) = 1 + α(x2 + x+ 1, 3i).

Now
3i | x2 + x+ 1 =⇒ 3i | 4x2 + 4x+ 4 =⇒ 3i | (2x+ 1)2 + 3.

For i = 1, this has 1 solution. For i > 1, we require (2x + 1)2 ≡ −3 (mod 9), which is impossible because if 3
divides a square then 9 should also divide that square.

If 3i | x3 − 1, then
x3 − 1 ≡ 0 (mod 3) =⇒ x ≡ 1 (mod 3) .

Then by LTE, if i ≥ 2:
i ≤ ν3(x3 − 1) = 1 + ν3(x− 1) =⇒ x ≡ 1

(
mod 3i−1

)
.

If i = 1 then there is one solution, and otherwise there are 3 solutions.

Finally, we want to compute

∏
p

[ ∞∑
i=0

α(x3 + x2 + x, pi)

p2i

]
[ ∞∑
i=0

α(x3 − 1, pi)

p2i

] =

[ ∞∑
i=0

α(x3 + x2 + x, 3i)

32i

]
[ ∞∑
i=0

α(x3 − 1, 3i)

32i

] =

[
1

30
+

2

32
+

1

34
+

1

36
+ · · ·

]
[

1

30
+

1

32
+

3

34
+

3

36
+ · · ·

] .

The numerator is
1

1− 1
9

+
1

9
=

89

72
,

while the denominator is

3 · 1

1− 1
9

− 2− 2

9
=

83

72
.

The final answer is
89

83
.
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