
Solutions to the Stuyvesant Team Contest

Fall 2019

Problem 1. [6] Compute the smallest positive integer n such that if n students participate in the
Stuyvesant Team Contest, they can be split evenly into 1, 2, 3, 4, 5, 6, and 7 teams.

Answer. 420 Proposed by Kimi

Proof. We seek the least common multiple of 1, 2, 3, 4, 5, 6, 7, which is 420.

Problem 2. [6] ABCD is a trapezoid has area 276 and AB ‖ CD. Points M and N are midpoints
of segment AD and BC, respectively. Compute the area of quadrilateral DMBN .

Answer. 138 Proposed by Kimi

Proof. Connect segment BD. The midpoint conditions give [BMD] = 1
2 [ABD] and [BDN ] =

1
2 [BDC]. Summing gives [DMBN ] = 1

2 [ABCD] = 138.

Remark. The condition AB ‖ CD is not necessary.

Problem 3. [7] Given that real number r satisfies |2019−r|+
√
r − 2020 = r, compute all possible

values of r − 20192.

Answer. 2020 Proposed by Kimi

Proof. Since r− 2020 is under the square root, r ≥ 2020 > 2019. Solving r− 2019 +
√
r − 2020 = r

gives r = 2020 + 20192, so the answer is 2020.

Problem 4. [7] How many distinct 8 digit numbers can be formed by concatenating exactly one
of each of {2, 0, 1, 9, 2019}?

Answer. 95 Proposed by Kimi

Proof. Since 0 cannot be the leading digit, the total number of ways to order the 5 numbers is
4× 4× 3× 2× 1 = 96. Note, we counted 20192019 twice, so the answer is 96− 1 = 95.

Problem 5. [8] If x and y are positive reals such that:

x+ y2 = 2019

x2 + y2 = 2109

then compute x3 + y2

Answer. 3009 Proposed by Rishabh

Proof. Subtracting the first equation from the second gives x2 − x = 90. This means x = −9 or
x = 10. Since x > 0, x = 10. This means y2 = 2009. The desired sum is 3009.
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Problem 6. [8] Let f(x) = x√
1+x2

and fn(x) = f(f(. . . f︸ ︷︷ ︸
n times

(x) . . . )), compute f99(1).

Answer.
1

10
Proposed by Kimi

Proof. Notice the pattern fn(1) = 1√
n+1

. We prove this via induction: the base case f1(1) = f(1) =
1√
2

holds. Assuming the case of fn(1), we have

fn+1(1) = f(fn(1)) = f

(
1√
n+ 1

)
=

1√
n+1√

1 + 1
n+1

=
1√
n+ 2

as desired. Thus, fn(1) = 1√
n+1

so f99(1) = 1√
99+1

= 1
10 .

Problem 7. [9] Equilateral 4ABC has side-length 2019. Points X,Y, and Z are on segments BC,
CA, and AB, respectively. If CX = CY = BZ = 673, compute the radius of the circle passing
through X,Y, and Z.

Answer. 673 Proposed by Akash

Proof. Since BX = 2019−673 = 1346 = 2BZ, we see that triangle BXZ is a 30−60−90 triangle,
so ∠BXZ = 30◦. Additionally, since CX = CY , triangle CXY is equilateral, so ∠CXY = 60◦.
Thus, ∠Y XZ = 180◦ − 30◦ − 60◦ = 90◦. Thus, ZY is a diameter of the circle passing through
X,Y, and Z. Observe that ZY = AZ = AB − BZ = 2019 − 673 = 1346. Thus, the radius is
1
2 · 1346 = 673

Problem 8. [9] A soccer ball is glued together edge-to-edge from 32 shapes, each of which either
a pentagon or a hexagon. Given each pentagon is glued to 5 hexagons and each hexagon is glued
to 3 pentagons and 3 hexagons, compute the number of hexagons.

Answer. 20 Proposed by Kimi

Proof. Let n be the number of hexagons, then there are 32−n pentagons. The number of pentagon-
hexagon-glued edges is 3n = 5(32− n). Thus, n = 20.

Problem 9. [10] Compute the sum of all possible non-negative integers n such that 0!+1!+· · ·+n!
is a perfect square.

Answer. 2 Proposed by Akash

Proof. First, verify n = 0 and n = 2 work, but n = 1 and n = 3 do not. Now, for n ≥ 4, since
k! ≡ 0 (mod 4) for k ≥ 4,

∑n
k=0 k! ≡ 1 + 1 + 2 + 6 ≡ 2 (mod 4), so it cannot be a perfect square.

Problem 10. [10] The number of teams is N . Submit an integer a between 0 and N , inclusive.
Let A be the average of all submissions and n be the number of submissions greater than A. You

will receive
⌈

20
2+|a−n|

⌉
points.

Answer. N.A. Proposed by Ethan

Remark. During the contest, N = 22, A = TBA, and n = TBA.
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Problem 11. [11] An ant starts at point A. Every second, picks a point that it is adjacent to at
random, and moves to this point. (Adjacent means connected by an edge.) What is the probability
that after 2020 seconds, the ant is on point B?

A

B

Answer.
1

6
Proposed by Akash

Proof. Note a simple parity observation: after 2019 (any odd number) seconds, it is at any one of
the 4 the midpoints of the sides, i.e. points adjacent to A. Then, the next second, it can move to
either of 2 corners or A, so the probability of the ant at A after 2020 seconds is 1

3 . Since the four
corners are symmetric, the probability of the ant at B after 2020 seconds is simply (1− 1

3)/4 = 1
6 .

Problem 12. [11] Let AB = 20, BC = 29, and CA = 21. Reflect A over BC to get A′. Reflect
A′ over AB and AC to get X and Y , respectively. Find the area of quadrilateral XY CB.

Answer. 630 Proposed by Akash

Proof. Let AA′ intersect BC at point D. Let the area of ADB equal M and the area of ACD
equal N . Note that ∠A′AX = 2∠A′AB and ∠A′AY = 2∠A′AC. Adding these two together,
we get ∠A′AX + ∠A′AY = 2∠A′AB + 2∠A′AC = 2(∠A′AB + ∠A′AC) = 2(∠BAC) = 180◦.
Thus, X,A, Y are collinear. Therefore, [Y CBX] = [Y CA] + [ACB] + [ABX]. Note that [ABX] =
[ABA′] = 2[ABD] = 2M , and similarly, [ACY ] = [ACA′] = 2[ACD] = 2N . Thus, [Y CBX] =
[Y CA] + [ACB] + [ABX] = 2M + [ACB] + 2N . Note that M + N = [ABD] + [ACD] = [ACB],
so the answer is simply 3[ACB] = 3 · 20·212 = 630

Problem 13. [12] Compute the number of pairs of positive integers (m,n) such that m,n ≤ 30

m+ gcd(m,n) = n+ lcm(m,n)

Answer. 111 Proposed by Akash

Proof. Let gcd(m,n) = d, and let m = da and n = db for positive integers a and b. Note that
we have gcd(a, b) = 1. Additionally, note that lcm(m,n) = dlcm(a, b) = dab Our equation now
becomes da+ d = db+ dab. Dividing by d and rearranging gives ab+ b− a− 1 = 0. Factoring the
left side gives us (a + 1)(b − 1) = 0. Since a > 0, we get b = 1. Thus, our condition is true if and
only if m is a multiple of n. There are

⌊
30
k

⌋
ordered pairs (m,n) such that m = kn. Summing this

over all possible values of k gives us

30∑
k=1

⌊
30

k

⌋
= 30 + 15 + 10 + 7 + 6 + 5 + 4 + 3 + 3 + 3 + 5 · 2 + 15 · 1 = 111

Problem 14. [12] If a is selected from {1, 2, . . . , 10} uniformly randomly and b is independently
(of a) selected from {−10,−9, . . . ,−1} uniformly randomly, compute the probability a2 + b is a
multiple of 3.
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Answer.
37

100
Proposed by Kimi

Proof. Note, a2 is congruent to 0 or 1 (mod 3). If a ≡ 0 (mod 3), b must also be 0 (mod 3). There
are 3 choices of a and 3 choices of b; if a ≡ ±1 (mod 3), b must be 2 (mod 3). There are 7 choices
of a and 4 choices of b. Thus, the desired probability is 3×3+4×7

10×10 = 37
100 .

Problem 15. [13] In the diagram below, arcs WX and Y Z both have center O with radii 1 and 2.
Given ∠OXY = ∠OWZ = 90◦ and points W,O, Y are collinear, compute the area of the shaded
region WXY Z.

X Y

W

Z

O

Answer. π Proposed by Kimi

Proof. Connect segment OX. Note OY = 2 = 2×OX, 4OXY is a 30-60-90 triangle so ∠XOW =
120◦. Rotate the figure about O clockwise 120◦ and 240◦. We see three of the shaded figures cover

the ring between circles of radii 1 and 2 centered at O exactly. Thus, the answer is π(22−12)
3 = π.

Remark. Look at the Google Chrome icon.

Problem 16. [13] The roots of x3 − 14x2 + 54x − p = 0 are positive real numbers that form a
right triangle. Find p.

Answer. 196
√

11− 616 Proposed by Akash

Proof. Let the roots be a, b, c, where c would be the hypotenuse of the right triangle. Then a2 +
b2 + c2 = 2c2. However, we know that

a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca) = 196− 108 = 88

by Vieta’s, so 2c2 = 88. Thus, we know c = 2
√

11. Plugging in 2
√

11 into our cubic, we see

88
√

11− 14 · 44 + 108
√

11− p = 0 =⇒ p = 196
√

11− 616

Problem 17. [14] Point D is on side BC of 4ABC such that AD ⊥ BC, AB +BD = DC, and
∠B = 40◦. Compute ∠C.

Answer. 20 Proposed by Kimi

Proof. Reflect point B across D to obtain point B′ and connect AB′. Note, 4ABB′ is isosceles so
∠AB′B = ∠B = 40◦ and AB = AB′. Then, CB′ = CD −DB′ = AB + BD −DB′ = AB = AB′

so 4AB′C is also isosceles. Thus, ∠C = 1
2∠AB

′B = 20◦.

Problem 18. [14] Find the last two digits of the sum of all positive integers x such that (
√
x +√

x+ 2019)2 is an integer.
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Answer. 67 Proposed by Rishabh

Proof. Expanding the given means that
√
x(x+ 2019) is an integer. Let gcd(x, x + 2019) =

gcd(x, 2019) = d, and let x = da, x + 2019 = db. Then we see d
√
ab is an integer, so

√
ab is

an integer. However, note that a and be are relatively prime. Since their product is a square, both
a and b must be squares. Thus, let x = da21 and x+ 2019 = db21. We will now do cases on d, as we
know that d is a divisor of 2019.

If d = 1 then b21− a21 = 2019, so (b1− a1)(b1 + a1) = 2019. Then, since 2019 = 1 · 2019 = 3 · 673,
we see that (b1, a1) = (1010, 1009), (338, 335), so x = a21 = 10092, 3352.

If d = 3 then b21 − a21 = 673, so (b1 − a1)(b1 + a1) = 673. Then, since 673 = 1 · 673, we see that
(b1, a1) = (337, 336), so x = 3a21 = 3 · 3362.

If d = 673 then b21 − a21 = 3, so a1 = 1 and b1 = 2. This means x = 673 · 12 = 673.
If d = 2019 then b21 − a21 = 1, which has no positive integer solutions.
The sum of all numbers is 10092+3352+3 ·3362+673 ≡ 81+25+3 ·96+73 ≡ 67 (mod 100).

Problem 19. [15] Real numbers x and y satisfy −π
2 < y < 0 < x < π

2 . Given sin y + tan2 x =
sinx+ tan2 y and sin2 x+ 2 cos(x− y) + sin2 y = 17

16 , compute sinx+ sin y.

Answer.
1

4
Proposed by Akash

Proof. Using the condition, we apply some elementary trigonometry to obtain:

sinx− sin y = tan2 x− tan2 =
sin2 x

1− sin2 x
− sin2 y

1− sin2 y
=

sin2 x− sin2 y

(1− sin2 x)(1− sin2 y)

so sinx+ sin y = (cos2 x)(cos2 y), squaring gives sin2 x+ 2 sinx sin y + sin2 y = cos4 x cos4 y. Then,

17

16
= sin2 x+ 2 cos(x− y) + sin2 y = cos4 x cos4 y + 2 cosx cos y

Solving gives cosx cos y = 1
2 and sinx+ sin y = 1

4 .

Problem 20. [Up to 64] Welcome to USAYNO!
(1) Define a magic square to be a 3-by-3 square of distinct numbers such that all rows, columns,

and the two diagonals diagonal have the same sum. Define a unit fraction as a fraction of the form
1
n for a positive integer n. There exists a magic square consisting of only unit fractions.

(2) A knight’s tour is a sequence of moves of a knight on a chessboard such that the knight
visits every square only once. If the knight ends on a square that is one knight’s move from the
beginning square (so that it could tour the board again immediately, following the same path), the
tour is closed. There exists a closed knight’s tour on a 4× 4 chessboard.

(3) There exists a closed two-dimensional shape with three non-concurrent lines of symmetry.
(4) Call a function f : R→ R goofy if |f(x)−f(y)|2019 ≤ |x−y|2020 for all reals x and y. Then,

every goofy function must be a constant function.
(5) Let S be the set of positive integers with no two consecutive digits that sum up to 9. Then,∑

x∈S

1

x

diverges, i.e. for every M , there exist finite subset T = {t1, t2, . . . , tn} ⊂ S such that
∑n

k=1
1
tk
≥M .

(6) In regular tetrahedron ABCD, if points X and Y are chosen on faces ABC and BCD,
then there must exists a triangle with side lengths AY , DX, and XY .
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Answer. TFFTFT Proposed by Akash

Proof. (1): take the 3-by-3 magic square. Divide each entry by 9! so k 7→ k
9! is a unit fraction.

(2): Assume that such a tour is possible. Without loss of generality, let it start in the upper
left corner. Label the top row as Row 1, the next row as Row 2, and third from top row as Row 3,
and the bottom row as Row 4. Note that a knight on Row 1 or Row 4 must go to either Row 2 or
Row 3. However, since there are an equal number of squares on the top and bottom row as there
are in the middle two rows, we know that the tour must alternate between Row 1/4 and Row 2/3.
Thus, there must be an even number of moves taken to get from the starting square to the square
immediately to the right of it. However, if we color this chessboard with a checkerboard pattern,
these two squares are opposite colors, but knights switch colors every move, so a knight would need
to take an odd number of moves. Thus, we have a contradiction.

(3): the center of mass exists by compactness and lies on all lines of symmetry.
(4): we show that if f satisfies |f(x) − f(y)| ≤ C|x − y|α ∀ x, y ∈ R for constant C ∈ R and

α > 1 (i.e. f is Hölder continuous of order α > 1), it must be constant. Fix x, since α− 1 > 0:∣∣∣f(y)− f(x)

y − x

∣∣∣ < C|x− y|1−α −−−→
y→x

0 =⇒ lim
y→x

f(y)− f(x)

y − x
= 0

Thus, f is differentiable at every x ∈ R and f ′(x) = 0, so f is constant. The conclusion follows.
(5): Consider all the d-digit numbers in S. We can pick the first digit in 9 ways. The next digit

has 9 choices, and then so does the next digit, and so on. Thus, there are 9d d-digit numbers in S.
Note that if x is a d-digit number in S, then 1

x ≤
1

10d−1 . Thus:

∑
x∈S

1

x
≤
∞∑
d=1

9d

10d−1
= 10

∞∑
d=1

(
9

10

)d
The latter is a geometric sequence, which converges. Thus, the original sum must converge as well.

(6): Pick a point E in the fourth dimension that is equidistant from points A,B,C,D. Then
ABCD,ABCE,ABDE,ACDE,BCDE are all congruent regular tetrahedrons. Thus, DX = EX
and AY = EY . Then we are asked if there must exist a triangle with side lengths EY,EX, and
XY . However, 4EXY is such a triangle.

Problem 21. [16] For any three digit number, define its Jerry’s to be the set of all distinct two
digit integers formed with exactly one copy of each of its digits. Let J be all three digit numbers
equal to the sum of its Jerry’s. Compute the product of the mean of J and the median of J .

Answer. 69696 Proposed by Kimi

Proof. If all three digits are the same, i.e. N = XXX, its only Jerry is XX, which is too small.
If two of the digits of N are the same, i.e. its digits are X,X, Y , we see the sum of its Jerry’s is
XX+XY +Y X = 22X+11Y , a multiple of 11. Using the divisibility rule of 11, either N = XXY
and Y = 0, in which case 110X = 22X is impossible, or N = XYX and Y ≡ 2X (mod 11). Since
0 ≤ X,Y ≤ 9, Y = 2X so 22X + 11(2X) = 101X + 10(2X) gives no solutions.

Thus, all 3 digits of N = XY Z are distinct. Now, we claim all its digits are nonzero: if Y = 0,
the Jerry’s of N = X0Z are {X0, Z0, XZ,ZX}, so 100X + Z = 21X + 21Z =⇒ 79X = 20Z is
absurd as the leading digit X 6= 0. If Z = 0, we have 100X + 10Y = 21X + 21Y =⇒ 79X = 11Z
is also absurd. Thus, X,Y, Z 6= 0, so the Jerry’s of N is {XY ,XZ, Y X, Y Z,ZX,ZY }. Therefore,

100X + 10Y + Z = 22X + 22Y + 22Z =⇒ 26X = 4Y + 7Z ≤ 4× 8 + 7× 9 = 95 =⇒ X ≤ 3

Cases X = 1, 2, 3 give J = {132, 264, 396}, giving the answer 2642 = 69696.
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Problem 22. [16] Let positive integer Tn be the number of ways to tile a 2×n grid with L-shaped
tiles (with rotations and reflections) and unit square tiles shown below. Compute the remainder
when T2019 is divided by 66.

Answer. 11 Proposed by Kimi

Proof. Starting from the leftmost vertical line moving right, we consider the first time (after k
units) we can draw a vertical line that does not cut into any tile. If k = 1, the 2× 1 must be tiled
by 2 unit types, giving Tn−1 ways for the rest; if k = 2, the 2 × 2 must be tiled by an L and a
unit tile (4 ways) and Tn−2 ways for the rest, giving 4Tn−2; if k = 3, the 2× 3 must be tiled by 2
complementing L’s (2 ways) and Tn−3 ways for the rest. Thus, we obtain recursion

Tn = Tn−1 + 4Tn−2 + 2Tn−3

where T0 = T1 = 1 and T2 = 5. Starting with index 0: modulo-2, Tn is always [1]; modulo-3,
Tn cycles [1, 1, 2, 2, 0, 0]; modulo-11, Tn cycles [1, 1, 5, 0, 0, 10, 10, 6, 0, 0]. Thus, T2019 ≡ 1 (mod 2),
T2019 ≡ 2 (mod 3), and T2019 ≡ 0 (mod 11). Thus, CRT gives T2019 ≡ 11 (mod 66).

Problem 23. [17] Compute the number of arithmetic sequence of integers (an)∞n=1 with a1 = 2019
that satisfies the following: for every positive integer n, there exist a positive integer m such that∑n

k=1 ak = am.

Answer. 5 Proposed by Kimi

Proof. Let the common difference of the sequence be d. Then the sum of the first n terms is

2019 + (2019 + d) + · · ·+ (2019 + d · (n− 1)) = 2019n+
(n− 1)n

2
d = 2019 + 2019(n− 1) +

(n− 1)n

2
d.

This is a term in the sequence only if d | 2019(n − 1) + (n−1)n
2 d, meaning that d | 2019(n − 1).

However, the only way this can be true for all n is if d | 2019. Thus, d must be a factor of 2019.
It is easy to see that if d > 0 the condition in the problem is satisfied, since we are summing
multiples of d. If d < 0 and d 6= −2019 then a1 + a2 > 2019, a contradiction. If d = −2019, the
condition is also satisfied. Since 2019 has 4 divisors, there are 4 + 1 = 5 such sequences.

Problem 24. [17] Given n people, they can form a set of non-empty groups such that each
person is in exactly one group; in each group of k people, they hold hands to form a single big
circle with k people. We say two such arrangements are identical if one can be obtained from the
other by permuting the set of circles and/or rotating each circle. Compute the number of distinct
arrangements for n = 2019 people.

Answer. 2019! Proposed by Kimi

Proof. Label the people 1, 2, . . . , n. Use parentheses to denote grouping into circles. The example
in the problem is (1)(23)(456) ∼ (1)(645)(32) 6∼ (1)(23)(546). We exhibit a bijection from distinct
arrangements to Sn, the set of permutations of {1, . . . , n}.

Given an arrangement, we define σ as follows: for person k, define σ(k) to the person to the
right of k, i.e. for (. . . , k, l, . . . ), take σ(k) = l. Note, take σ(k) = k if k is in a group of 1, i.e. (k).
Clearly, σ ∈ Sn and distinct arrangements corresponds to distinct bijections.

Conversely, given any σ ∈ Sn, we create an arrangement: the first circle is
(
1, σ(1), σ2(1), . . .

)
where σk = σ ◦ σk−1. For each k, if σk(1) 6∈ {1, σ(1), . . . , σk−1(1)}, we can put person σk(1) to the
right of person σk−1(1). We can do so until, for the first time (smallest k), some σk(1) = σl(1)
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for l < k. If l ≥ 1, since σ is a bijection, σl−1(1) = σ−1(σl(1)) = σ−1(σk(1)) = σk−1(1). This
contradicts the minimality of k unless l = 0, where σ0(1) = 1. When that happens, we stop and
the circle is complete as it loops back to person 1. We now pick any person j not in the circle (if
any) and repeat the process with j instead of 1 until we exhaust all n people. Clearly, this is valid.

Thus, the number of distinct arrangements is |Sn| = n!, giving the answer 2019!.

Remark. If we do not write down groups of one (and assume they are fixed points of σ by default),
this notation is the well-known cycle notation for the symmetric group on n letters.

Problem 25. [18] In 4ABC with incenter I, AB = 5, BC = 7, and CA = 8. Segment AI
intersects the incircle at point T , and the line tangent to the incircle at T intersects the circumcircle
of 4ABC at P and Q. Let IB and IC be the B-excenter and C-excenter of 4ABC, respectively.
A point X is chosen on segment IBIC . Compute the maximum possible area of 4XPQ.

A

B
C

I

T

P
F

E

Q

V

U

Answer.
7
√

3

2
Proposed by Akash

Proof. Note that IBIC is the external angle bisector of A, so it is perpendicular to AI. Since AI
is perpendicular to PQ, we get that PQ and IBIC are parallel, so the area of XPQ is constant for
all points X on segment IBIC . Thus, without loss of generality, let X be the point A.

Consider the diagram above. Note that because AB2+AC2−2AB ·BC cos(A) = BC2, we can plug
in our sidelengths to get cos(A) = 1

2 , so ∠A = 60◦. Note that we have [ABC] =
√

10 · 2 · 3 · 5 =

10
√

3, by Heron’s formula. Thus, we know that the inradius is given by r = ABC
s , where s is the

semi-perimeter. Plugging in [ABC] = 10
√

3 and s = 10 gives us r =
√

3. Since ∠A = 60◦, we have
that ∠IAU = 30◦, so AI = 2IU = 2

√
3, so AT = AI − IT = 2

√
3 −
√

3 =
√

3. Since 4AFE is
equilateral, we have AF = FE = EA = 2. Let x = PF and y = EQ. By Power of Point from
points F and E, we get:

PF · FQ = AF · FB =⇒ x(2 + y) = 2 · 3 = 6

PE · EQ = AE · EC =⇒ y(2 + x) = 2 · 6 = 12

Subtracting the first from the second gives 2y − 2x = 12 − 6 = 6, so y = x + 3. Plugging
this into the first one equation gives x(5 + x) = 6, so x = 1, and thus y = 4. Hence, we have

PQ = PF + FE + EQ = 1 + 2 + 4 = 7. Thus, the area of APQ is 1
2AT · PQ = 7

√
3

2
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Problem 26. [18] n = 20103+6003+676 is the product of a three-digit prime number, a four-digit
prime number, and a five-digit prime number. Find the four-digit prime factor of n.

Answer. 3079 Proposed by Rishabh

Proof. Let x = 2010 = 2 · 3 · 5 · 67, y = 600 = 23 · 3. · 52, and z = 672. Then note that 3yz = 2x2.

Then:

n = x3 + y3 + z3 = (−x)3 + y3 + z3 + 2x3 = (−x)3 + y3 + z3 − 3(−x)yz.

Using the well-known factorization a3 + b3 + c3− 3abc = (a+ b+ c)(a2 + b2 + c2− ab− bc− ca), we
know that y + z − x is a factor of n. y + z − x = 600 + 672 − 2010 = 3079, which must be prime
since otherwise n would have a prime factor with less than 3 digits.

Problem 27. [19] Compute
∞∑
n=1

(−2)2
n+n

22n+1 − 22n + 1

Answer. − 8

21
Proposed by Akash

Proof. Let f(n) =
22

n+n

22n+1 − 22n + 1
and g(n) =

22
n+n

22n+1 + 22n + 1
. Note that

g(n)− f(n) =
22

n+n

22n+1 + 22n + 1
− 22

n+n

22n+1 − 22n + 1

=
22

n+n(22
n+1 − 22

n
+ 1)− 22

n+n(22
n+1

+ 22
n

+ 1)

(22n+1 − 22n + 1)(22n+1 + 22n + 1)

= − 22
n+n · 22n+1

22n+2 + 22n+1 + 1

= − 22
n+1+n+1

22n+2 + 22n+1 + 1

= −g(n+ 1).

Also note
(−2)2

n+n

22n+1 − 22n + 1
= (−1)nf(n).

Let Sn be the nth partial sum of the sum we want. Then:

g(1) + Sn = g(1)− f(1) + f(2)− f(3) + · · ·+ (−1)nf(n)

= −g(2) + f(2)− f(3) + · · ·+ (−1)nf(n)

= g(3)− f(3) + · · ·+ (−1)nf(n)

...

= (−1)ng(n+ 1)

As n goes to infinity, (−1)ng(n+ 1) goes to 0. Thus, as n goes to infinity, Sn goes to −g(1), so the
original sum goes to −g(1) = − 8

21 .

9



Problem 28. [19] 2019 numbers are chosen uniformly at random from the range [0, 1]. Given that
the largest of the numbers is at least 1

5 larger than all other numbers, what is the expected value
of the largest number?

Answer.
2524

2525
Proposed by Akash

Proof. Given such 2019 numbers 0 ≤ x1 ≤ x2 ≤ · · · ≤ x2019 ≤ 1 where x2019 − x2018 ≥ 1
5 , we

take yi = xi for 1 ≤ i ≤ 2018 and y2019 = x2019 − 1
5 to biject it to 2019 numbers in [0, 45 ]. Again,

we biject it to 2020 positive reals whose sum is 4
5 by taking zi = yi − yi−1 for 1 ≤ i ≤ 2019 and

z2020 = 4
5 − y2019. By symmetry, E(z2020) = 4

5 ·
1

2020 = 1
2525 . Finally, linearity of expectation gives

E (x2019) = E
(
y2019 +

1

5

)
= E

((
4

5
− z2020

)
+

1

5

)
= 1− E (z2020) =

2524

2525

Problem 29. [20] Let O, I, and H denote the circumcenter, incenter, and orthocenter of 4ABC.
Given that OI =

√
901, OH = 3

√
401, and HI = 2

√
226, compute the sum of the inradius and

circumradius of 4ABC.

Answer. 1351 Proposed by Rishabh

Proof. Let R and r denote the circumradius and inradius of 4ABC. Let N be the midpoint of
OH, which is also the center of the nine-point circle. From the median formula, we see

IN =
1

2

√
2IO2 + 2IH2 −OH2 =

1

2

√
2 · 901 + 2 · 904− 3609 =

1

2

By Feurbach’s Theorem, the nine-point circle is tangent to the incircle. Since the nine-point circle
has radius R

2 , we know that IN =
∣∣R
2 − r

∣∣. However, by Euler’s Inequality, R ≥ 2r, so actually

IN = R
2 − r. Thus, R − 2r = 1. Finally, Euler’s Formula says that OI2 = R(R − 2r) = R, so

R = 901. This means r = 450, so R+ r = 1351.

Problem 30. [20] For positive real y 6= 2, find the product of all possible positive real x as a
function of y such that

√
x+ 4 +

√
y + 2 +

√
y + 4 + 2 =

√(√
x+ 4 + 2

) (√
y + 2 + 2

)(√
y + 4 + 2

)
Answer. 4 Proposed by Ethan

Proof. Let positive reals x, y, z satisfy x2 + y2 + z2− xyz = 4 and max(x, y, z) > 2 then there exist
reals a, b, c such that abc = 1 and x = a + 1

a , y = b + 1
b , z = c + 1

c . Prove this by expanding

and quadratic formula. So since
√
a+ 2 + 1

a =
√
a + 1√

a
, x, y, z work for the above if and only if

√
x+ 2,

√
y + 2,

√
z + 2 work. Because max(x+2, y, y+2) ≥ (y+2) > 2, (x+2)2+y2+(y+2)2−(x+

2)y(y+2) = 4 if and only if (x+2+2)+(y+2)+(y+2+2)−
√

(x+ 2 + 2) (y + 2) (y + 2 + 2) = 4 if

and only if
√
x+ 4 +

√
y + 2 +

√
y + 4 + 6−

√(√
x+ 4 + 2

) (√
y + 2 + 2

) (√
y + 4 + 2

)
= 4. Which

is equivalent to the condition we are given. So the solutions are the solutions to (x + 2)2 + y2 +
(y+ 2)2− (x+ 2)y(y+ 2) = 4. The product of the roots is 4 by Vieta since y 6= 2 so there can’t be
double roots. Note that since x+ 2 = a+ 1

a , x ≥ 0 and x 6= 0 since the product is not 0.
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