## 2018 Fall Stuyvesant Team Contest

| 1.  | 1. [5] Stan flips an unfair coin. Given this information, what is the probabil Team Name:                                                                                    | ity that it comes up heads?  Answer: |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|     |                                                                                                                                                                              |                                      |
| 2   | 2. [5] Find the least positive integer $n$ such that the second digit of $11^n$ is n                                                                                         |                                      |
| ۷.  | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
|     |                                                                                                                                                                              |                                      |
| 3.  | 3. [5] The number 2018 has the property that its first digit and last digit represented by the reverse of the other digits; that is, $2 + 8 = 10$ . What with this property? |                                      |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| 4.  | 4. [6] Compute the number of proper divisors of 1023.                                                                                                                        |                                      |
|     | <b>Note:</b> A positive integer m is a proper divisor of a positive integer n if $\frac{n}{m}$                                                                               | is an integer greater than 1.        |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| _   | 5. [6] Find the least positive integer $n$ such that a regular $n$ -gon has interior                                                                                         |                                      |
| Э.  | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
|     |                                                                                                                                                                              |                                      |
| 6.  | 6. [6] A Stuyvesant student sleeps at 11:59 pm and wakes up at 12:01 am. Stuyvesant student's day (while they are awake) do the minute hand and l                            | nour hand of a clock line up?        |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| 7.  | 7. [7] If $x + y = 7$ and $\frac{1}{x} + \frac{1}{y} = 0.7$ , compute the greater of the two values $x$                                                                      | and $y$ .                            |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| 8.  | 8. [7] Compute the sum of all x satisfying $4^x + 128 = 3 \cdot 2^{x+3}$ .                                                                                                   |                                      |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| 9.  | 9. [7] How many ways can Kimi get from the second floor to the fourth flo the three staircases and the two relevant escalators? (He may only go up                           | or using any combination of          |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| .0. | 0. [8] Let $s(n)$ denote the sum of the digits of $n$ , and let $f(n) = 11s(n) -$ numbers $n$ is $f(n)$ also a two digit number?                                             | n. For how many two digit            |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |
| 1.  | 1. [8] Compute the number of integers n such that $2 \le n \le 2018$ and $\binom{n}{2}$ is                                                                                   | relatively prime to 2018.            |
|     | Team Name:                                                                                                                                                                   | Answer:                              |
|     |                                                                                                                                                                              |                                      |

| 12. | [8] If a regular 2018-gon $A_1A_2\cdots A_{2018}$ has                                              | •                                                                                                                            |  |
|-----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|
|     | Note: $[\cdots]$ denotes the area of the polygon                                                   |                                                                                                                              |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
| 4.0 |                                                                                                    |                                                                                                                              |  |
| 13. | [9] Positive reals a and b satisfy $\sqrt{ab} = \sqrt{ab}$                                         | $=\sqrt{a}+\sqrt{b}+\sqrt{a+b}$                                                                                              |  |
|     | Compute $\sqrt{ab} - 2\sqrt{a+b}$ .                                                                | Val val val v                                                                                                                |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    | ·····                                                                                                                        |  |
| 14. | quotient when divided by 30 is greater than                                                        | equal to 900 is chosen. What is the probability that the the remainder when divided by 30?                                   |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 15. |                                                                                                    | pots $r$ , $s$ , and $t$ . If $r^2 + s^2 + t^2 = 16$ , compute $bc$ .                                                        |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 16. | [10] How many three digit multiples of 9 ha                                                        |                                                                                                                              |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 17. |                                                                                                    | $AC = 15$ . Let $M_1$ and $M_2$ be the trisection points of $BC$ and $AM_2$ . Suppose the circles intersect again at a point |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 18. | [10] Suppose that $P(x)$ is a cubic polynomia $P(4) + P(0)$ .                                      | l satisfying $P(1) = 4$ , $P(2) = 9$ , and $P(3) = 16$ . Compute                                                             |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 19. | $[{\bf 11}]$ Two chords of a circle have length 12 at the chords bisects the other, compute the ra | and 13. They intersect, forming an angle of $30^{\circ}$ . If one of adius of the circle.                                    |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 20. | [11] Let $A$ be an arithmetic sequence. Com 6 consecutive terms of $A$ are primes.                 | apute the smallest positive common difference $d$ such that                                                                  |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |
| 21. | [11] Compute the sum of all integers $n$ for which                                                 |                                                                                                                              |  |
|     |                                                                                                    | $\frac{n^4 + n^2 + 400}{n^2 + n + 1}$                                                                                        |  |
|     | is also an integer.                                                                                |                                                                                                                              |  |
|     | Team Name:                                                                                         | Answer:                                                                                                                      |  |
|     |                                                                                                    |                                                                                                                              |  |

| 22. | [12] How many ways can the sequences cannot sum to 0? | quares of a 2 by 3 board be filled with elements of $\{-1,0,1\}$ if adjacent  |
|-----|-------------------------------------------------------|-------------------------------------------------------------------------------|
|     | Team Name:                                            | Answer:                                                                       |
|     |                                                       |                                                                               |
| 23. | [12] Positive real numbers $a, b, a$                  | c, d satisfy                                                                  |
|     |                                                       | $a^2 - \sqrt{3}ab + b^2 = c^2 + \sqrt{3}cd + d^2 = 81$                        |
|     | Find the maximum value of ac                          | c+bd.                                                                         |
|     | Team Name:                                            | Answer:                                                                       |
|     |                                                       |                                                                               |
| 24. | [12] How many ordered triples is divisible by $30$ ?  | of integers $(a,b,c)$ satisfy $1 \le a,b,c \le 30$ and $(1+2a)(1+3b)(1+5c)-1$ |
|     | Team Name:                                            | Answer:                                                                       |
|     |                                                       |                                                                               |