New York City Team Contest: Problems

	Spring 2022	
1.	. [6] Suppose $T = TNYWR$, where T, N, Y, W , and R are distinct	integers. What is T ?
	Team Name:	Answer:
2.	2. [6] Find the smallest positive integer that is one more than a new perfect square.	
	Team Name:	Answer:
3.	5. [7] What is the minimum number of coin flips to guarantee you of $HTHT$ (where H represents flipping a heads, and T represents f	
	Team Name:	Answer:
4. [7] Equilateral triangle ABC has side length 22. A point P inside the triangle is chosen $PC = 14$. Compute PA .		ide the triangle is chosen such that $PB =$
	Team Name:	Answer:
5.	these circles are arranged into a hexagon, as shown, and the states circles in some order. On each edge of the hexagon, Stanley in the circles connected to this edge, and Brian writes down the connected to this edge. Stanley then notices that he wrote down the numbers Brian wrote down?	y writes down the sum of the two numbers product of the two numbers in the circles
	Team Name:	Answer:

6.	6. [8] Mr. Cocoros collects dice. A die of "size n " has n faces labeled $1, 2, \ldots, n$, each equally likely to up. Mr. Cocoros has all dice of size 4 to N for some positive integer N . Mr. Cocoros rolls all of his once. If the probability that Mr. Cocoros rolls at least one "1" is 75%, what is N ?		
	Team Name:	Answer:	
7.		st of integers are 20 and 22, respectively. If the sum of the numbers in the e numbers in the list, what's the least possible number of entries in the list?	
	Team Name:	Answer:	
8.	[9] Suppose three of the vertices cube.	of a cube are $(2,4,8)$, $(12,5,3)$, and $(11,7,14)$. Compute the volume of this	
	Team Name:	Answer:	
9.		$\underline{a}\underline{b}\underline{b}\underline{a}\underline{c}_4$, (these are the base three and base four representations of N) where	
	Team Name:	Answer:	
10.	[Up to 10] Pick a number besubmissions. Estimate 2σ . (Not	tween 0 and 1, inclusive. Let σ denote the standard deviation of all valid sponsored by the way.)	
	If your submission is X and the	actual value of 2σ is Y , you will receive	
		$\max\left(\left\lfloor \frac{60}{ X-Y +1} - 50\right\rfloor, 0\right)$	
	points.		
	Team Name:	Answer:	
11.	[11] Compute the positive integer	er n satisfying	
	$(n-16)^2 + (n-15)^2 + \cdots$	$\cdot + (n-1)^2 + n^2 = (n+1)^2 + (n+2)^2 + \dots + (n+15)^2 + (n+16)^2.$	
	Team Name:	Answer:	
12.	[11] Let $\triangle ABC$ be an isosceles	triangle with vertex A and $\angle BAC = 80^\circ$. Let D be on segment BC such on segment AC such that $\angle EBC = 30^\circ$. Compute $\angle BED$.	
	Team Name:	Answer:	

13.	3. [12] How many ordered triples of positive integers (a, b, c) are there such that $(a^a \times b^b \times c^c) \mid 6^6$? (We say " $x \mid y$ " if x is a divisor of y .)	
	Team Name:	Answer:
14.	[12] I was born on May 10, 2004. for how many days will my dad b	. My dad was born on July 13, 1968. Presuming both of us live until 100, be twice my age?
	Team Name:	Answer:
15.	-	ch that $AB = 3$, $BC = 4$, and $CA = 5$. Let D be the point on BC such matricle of $\triangle ADC$ intersect AB at $E \neq A$. Compute EC .
	Team Name:	Answer:
16.	[13] Compute $(\log_2(20))(\log_2(20))$	$\log_2(40))(\log_2(640)) - (\log_2(10))(\log_2(160))(\log_2(320)).$
	Team Name:	Answer:
17.	[14] Adi, Das, and Big J are playing at ping pong, so in any given game the winner stays on the table, where the stays of the stay o	ing in a 3-person tournament of ping pong. Each of them is "equally good" he, the two players of that game are equally likely to win. After each game, hile the loser rotates off. The winner of the tournament is the first person that Adi and Das play the first match, what is the probability that Big J
	Team Name:	Answer:
18.		radius 8. Let A be a point on Ω , and B be the midpoint of OA . A line Ω at X and Y such that $\frac{BX}{BY} = 2$. Compute the area of $\triangle AXY$.
	Team Name:	Answer:
19.	• • = =	uniformly selected 56-digit positive integer. Compute the probability that greater than the sum of the digits of n .
	Team Name:	Answer:

20	IIn	to 28	l Welcome	to	USAYNO!
ZU.	IUD	ιυ ⊿c	1 welcome	ιO	USAINU

Instructions: Submit a string of 6 letters corresponding to each statement: put T if you think the statement is true, F if you think it is false, and X if you do not wish to answer. You will receive $\frac{(n+1)(n+2)}{2}$ points for n correct answers, but you will receive zero points if any of the questions you choose to answer are incorrect. Note that this means if you submit "XXXXXX" you will get one point.

- (1) Four positive integers form a nonconstant geometric sequence. Then their sum must have at least four positive integer factors.
- (2) It is known that $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$. There is some k > 3 for which $1^k + 2^k + \dots + n^k$ is equal to $f(n)^2$ for some polynomial f with rational coefficients.
- (3) A triangle has integer side lengths and integer area. Its side lengths form an arithmetic sequence with common difference 4. Then its perimeter must be a multiple of 8.
- (4) All real polynomials P satisfying $P(x^2) = P(x)^2$ for all real x are either 0 or x^n for some nonnegative integer n.
- (5) Let $\sigma(n)$ denote the sum of the divisors of n. Then

$$\sum_{k=1}^{n} \sigma(k) \le n^2$$

for all positive integers n.

(6) Consider a triangle divided into 6 smaller triangles by 3 concurrent lines passing through its vertices. There exists such a configuration where the 6 triangles created have areas that form a non-constant geometric sequence in some order.

	Team Name:	Answer:
21.	[16] Define $F_0 = 0, F_1 = 1$, and for $n \ge 1, F_{n+1} = F_n + F_{n-1}$. Compute the sum of	f the prime factors of

Team Name:	Answer:

 $\sum_{n=1}^{10} F_{n+3} F_n.$

22. [16] In convex quadrilateral ABCD, $\angle A = 37^{\circ}$, $\angle B = 23^{\circ}$, AB = 22, CD = 20, and AD = BC. Compute [ABCD], the area of quadrilateral ABCD.

Team Name:	Answer:	

23. [17] How many ordered pairs of positive integers (a,b) are there such that $a,b \leq 50$ and

$$\tau(ab) = \tau(a) + \tau(b) - 1,$$

where $\tau(n)$ is the number of divisors of n?

Геат Name:	Answer:	

	Compute S	$\sum_{n=1}^{\infty} (-1)^n f(n) n.$
	Team Name:	Answer:
25.	[18] There is a unique quadratic function f such	ch that
	• there exists a constant c such that $f(f(x))$ • $f(0) = 23$.) = c is satisfied only by $x \in \{1, 2, 3\}$, and
	Compute c .	
	Team Name:	Answer:
26.	[18] Let the incircle of triangle ABC touch side	es AC and AB at E and F , respectively. If $EF = 42$ and line e of triangle ABC , find the area of quadrilateral $AEIF$.
	Team Name:	Answer:
27.	[19] Suppose that $P(x)$ is a polynomial of deg Compute $P(2^7)$.	ree at most 5 such that $P(2^k) = k$ for $k = 1, 2, 3, 4, 5$, and 6.
	Team Name:	Answer:
28.	right arrow or an up arrow. You can only mov	mns, every square not in the top row is randomly assigned a e from one square to the adjacent square where the arrow is a path from some square in the bottom row to some square
	Team Name:	Answer:
29.	[20] Define	\ \sum_1
	J (n	$h) = \sum_{wxyz n} \frac{1}{wxyz},$
		adruples of positive integers (w, x, y, z) satisfying $wxyz \mid n$. $p^{q}3^{q}7^{r}$, where p, q , and r are nonnegative integers.
	Find the smallest value of M satisfying $f(x) \le$	M for all $x \in A$.
	Team Name:	Answer:

24. [17] Let f(n) denote the number of ordered pairs of positive integers (a,b) satisfying ab=n and $a,b\leq 20$.

30.	[20] Let ω and Γ be circles with radii 15 and 25, respectively, such that the centers	of ω and Γ are 30 apart.
	Say that ω and Γ have common external tangent AB with A on ω , B on Γ , and sa	y that ω and Γ intersect
	at C and D with C closer to AB than D . Let F be the reflection of C across AB .	Compute DF .
	Team Name:	Answer: