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Problem 1. Let n be the smallest positive perfect square such that 2024n is a perfect
cube. Compute

√
n.

Answer. 253

Solution. We note that 2024 = 23 · 11 · 13. Because n is a perfect square, its prime
factorization consists only of even exponents. To minimize n, it should be in the form
22a ·112b ·132c for nonnegative integers a, b, and c. Any other prime factors are unnecessary.

Now, 2024n = 23+2a · 111+2b · 131+2c is a perfect cube, so its prime factorization consists
only of exponents that are multiples of 3. This means that 3 | 3 + 2a, 1 + 2b, 1 + 2c, and
the smallest solutions are a = 0, b = 1, and c = 1.

Thus, the minimal n is 112 · 232, and √n = 11 · 23 = 253 .
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Problem 2. An Olympic-size swimming pool is 50 meters long and can hold up to
2500 cubic meters of water. Daniel is building a to-scale model that is 0.1 meters wide
and 0.008 meters deep. How much water can Daniel’s model hold, in cubic centimeters?

Answer. 160

Solution. Daniel’s scale model has a width to depth ratio of 0.1 : 0.008 = 25 : 2 that
must also be true in the Olympic-size swimming pool. Let its width be 25k and its height
be 2k. Then, 50 · 25k · 2k = 2500 gives k = 1. This means that the pool’s dimensions
are 250 times the dimensions of the model, which has dimensions 0.2× 0.1× 0.008 (in
meters). Converting to centimeters, the answer is 20 · 10 · 0.8 = 160 .
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Problem 3. A string of letters is called fruity if there exists a pair of consecutive
letters that are the same. For example, APPLE is fruity, but BANANA is not. The
word GRAPEFRUIT is written on a chalkboard. Andrew erases a random letter each
minute until the chalkboard is blank. The probability that the string of letters on the
chalkboard is never fruity can be expressed as m

n
where m and n are relatively prime

positive integers. Find m+ n.

Answer. 29

Solution. We use complementary counting, solving for the probability that the string of
letters is, at some point, fruity. The only repeat letters in GRAPEFRUIT are the two
Rs, so the only way for the string of letters to be fruity is if the A, P, E, and F are all
erased before any of the Rs.

We can represent the order of letters erased as a random permutation of the letters in
GRAPEFRUIT. Specifically, we want the probability that A, P, E, and F all come before
both Rs. First, note that the four letters G, U, I, and T do not affect this probability; we
can first construct the ordering of the other six letters, and insert these four anywhere to
achieve every permutation. Then, we are looking at all permutations of AEFPRR, and it
is clear that the two Rs must be the last two letters. Of the

(
6
2

)
= 15 ways of arranging

the two Rs, only one satisfies this.

Our desired probability is then 1− 1
15

= 14
15
, and m+ n = 14 + 15 = 29 .
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Problem 4. Find the smallest prime p such that p2 + 2024 has 27 divisors.

Answer. 251

Solution. If a number has an odd number of divisors, then it must be a square. This
means that we can let p2 + 2024 = n2 for some positive integer n. Then, n2 − p2 =
2024 = 23 · 11 · 23 = (n− p)(n+ p). These two factors (n− p, n+ p) must be the same
parity, so the only possible choices are (44, 46), (22, 92), (4, 506), and (2, 1012). The first
case gives p = 1, which is not prime. The second case gives p = 35, which is also not
prime. The third gives p = 251, which is prime, and n = 255. Since 2552 = 32 · 52 · 172
does indeed have 27 factors, our answer is 251 .
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Problem 5. Point P lies on diameter XY of a circle with radius 4. Chord AB passes
through P and makes a 30◦ degree angle with XY . Let C be the reflection of B over

XY . If AP
PB

= 2
3
, then the area of △ABC can be expressed as a

√
b

c
, where a and c are

relatively prime positive integers and b is a squarefree integer. Find a+ b+ c.

Answer. 202

Solution. By reflection, m∠BPC is twice the angle PB makes with the diameter, which
is 2 · 30◦ = 60◦. By symmetry, ∠PBC ∼= ∠PCB, so △BPC is equilateral. Then,
m∠ABC = 60◦, so AC inscribes a 120◦ arc. We can compute the length of AC by
drawing the altitude from O, the center of the circle, and using 30 − 60 − 90 triangle
ratios to get that AC = 2 · 4 sin(60◦) = 4

√
3.

A

B

C

PO

60◦

4

2
√
3

2
√
3

Now, let AP = 2x and PB = 3x, which gives BC = 3x and AB = 5x. By Law of
Cosines on △ABC,

(3x)2 + (5x)2 − 2(3x)(5x) cos(60◦) = (4
√
3)2

which gives x2 = 48
19
. The area of △ABC is then

1

2
(3x)(5x) sin 60◦ =

15
√
3

4
x2 =

180
√
3

19

by Law of Sines, and the desired sum is a+ b+ c = 180 + 3 + 19 = 202 .
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Problem 6. Find the unique integer k such that the polynomial x3 − 14x2 + 62x− k
has three zeroes that are the side lengths of a right triangle.

Answer. 84

Solution. Let the three zeroes of the polynomial be r, s, and t such that t is the largest.
Then, it must be the length of the hypotenuse, and r2 + s2 = t2 by the Pythagorean
Theorem. Adding t2 to both sides gives a symmetric expression on the left-hand side,
which we can compute with Vieta’s:

r2 + s2 + t2 = 2t2

(r + s+ t)2 − 2(rs+ st+ tr) = 2t2

(14)2 − 2(62) = 72 = 2t2

t = ±6.

We reject the negative solution, as side lengths must be positive. Then, since 6 is a zero
of the cubic, we can plug in:

(6)3 − 14(6)2 + 62(6)− k = 0

and k = 84 .
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Problem 7. Three standard six-sided dice are rolled, and let A be their sum. Then,
the die with the lowest number is re-rolled. (If there are multiple dice with the lowest
number, only one of them is re-rolled.) Let B be the sum of the dice after the re-roll.
The probability that B > A can be expressed as n

64
. Find n.

Answer. 855

Solution. We do casework on what the lowest number is after the initial rolls of the three
dice, and sum the probabilities. Note that, for an integer k ≤ 6, there are 6 − k + 1
integers x that satisfy k ≤ x ≤ 6 and 6− k integers x that satisfy k < x ≤ 6.

This means that the probability that the lowest number is k is

(6− k + 1)3 − (6− k)3

63

as there are (6− k + 1)3 rolls in which the lowest number is at least k, and (6− k)3 rolls
in which the lowest number is greater than k.

If the lowest number rolled is k, then there is a 6−k
6

chance of rolling a greater number
(and therefore greater sum) after the re-roll. We then want to compute

n = 64 ·
6∑

k=1

(6− k + 1)3 − (6− k)3

63
· 6− k

6

=
6∑

k=1

(
(6− k + 1)3 − (6− k)3

)
· (6− k)

=
5∑

k=0

(
(k + 1)3 − k3

)
· k

= 5(63 − 53) + 4(53 − 43) + 3(43 − 33) + 2(33 − 23) + 1(23 − 13)

= 5 · 63 −
5∑

k=1

k3

= 1080− 225 = 855 .
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Problem 8. How many ways are there to color the faces of a cube one of five colors
such that no two faces sharing an edge are the same color? Rotations are considered
distinct.

Answer. 780

Solution. We fix the colors of the top and bottom faces. If they are the same color, then
there are 5 ways to color them, and the remaining four faces must be colored with the
other four colors only. If they are different colors, then there are 5 · 4 = 20 ways to color
them, and the remaining four faces must be colored with the other three colors only.

We define f(n) as the number of ways to color the left, front, right, and back faces of a
cube with n colors while satisfying the condition. Then, our answer is 5f(4) + 20f(3).

Because these four faces form a loop around the cube, f(n) is equivalent to the number
of length 4 sequences of n colors, where adjacent colors are different, and the first and
last colors are different. We will use complementary counting, computing sequences with
distinct adjacent colors, and then subtracting away sequences where the first and last
colors are the same.

The invalid sequences are of the form ABCA, and there are n(n − 1)(n − 2) ways to
choose which colors. The total number of sequences is clearly n(n − 1)3, as there are
n ways to choose the first color and n− 1 ways to choose each of the other three. So,
f(3) = 3 · 23 − 3 · 2 · 1 = 24− 6 = 18, and f(4) = 4 · 33 − 4 · 3 · 2 = 108− 24 = 84.

Our answer is then 5 · 84 + 20 · 18 = 420 + 360 = 780 .

Remark. Using this strategy allows for generalization to any number of colors, as
f(n) = n(n− 1)3 − n(n− 1)(n− 2) in general.
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Problem 9. Square ABCD has E as the midpoint of AB. Let P be the point on BC

such that the line
←→
PD intersects EC and AC at F and G respectively, and AG

GC
= CF

FE
. If

CP
PB

can be expressed as a+
√
b

c
, where a and c are relatively prime positive integers and b

is a squarefree integer, find a+ b+ c.

Answer. 22

Solution. WLOG, let BP = 1 and PC = x, so CP
PB

= x. Then, AD = BC = x+ 1. By
parallel lines, △AGD ∼ △CGP with ratio AD

CP
= x+1

x
= AG

GC
.

A B

CD

E

P

F

G

x

1

x+ 1

M

Let M be the midpoint of PD. Then, EH is the midline of trapezoid BPDA, and has
length BP+AD

2
= x+2

2
. By parallel lines, △CFP ∼ △EFM with ratio CP

EM
= x

x+2
2

=
2x
x+2

= CF
FE

.

We are given that the two ratios AG
GC

and CF
FE

are equal, so we get x+1
x

= 2x
x+2

and

x2 − 3x − 2 = 0, which has positive solution x = 3+
√
17

2
. The desired sum is then

a+ b+ c = 3 + 17 + 2 = 22 .
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Problem 10. Consider a sequence of non-negative integers defined with x1, x2 < 1000,
and xk = min{|xi−xj|, 0 < i < j < k} for all integers k ≥ 3. For example, x3 = |x1−x2|
and x4 = min{|x1 − x2|, |x1 − x3|, |x2 − x3|}. Find the greatest possible value of x17 over
all such sequences.

Answer. 0

Solution. We claim that the sequence x3, x4, . . . is non-increasing. By the definition of
xk for k ≥ 3, there must exist i < j < k such that |xi−xj| = xk is minimal over all i and
j. Since it is also true that i < j < k + 1, we know xk+1 ≤ xk by the definition of xk+1.

We can extend this non-increasing property to x1 and x2 WLOG. First, we can clearly
assume x1 ≥ x2 WLOG, as their absolute difference, equal to x3, does not change.
Now, if x2 ≥ x3, we are done. If x2 < x3, we swap x2 and x3, using the fact that
x1 − x2 = x3 =⇒ x1 − x3 = x2.

We move on to maximizing the value of x17. It is clearly not optimal to have xk = xk+1,
as xk+2 = 0, and this does not maximize terms past xk+2, so we would like to avoid this
for as long as possible. In order for xk ̸= xk+1, the value of xk+1 must be the minimum
absolute difference involving xk, as other absolute differences are already accounted for
in xk’s definition. In fact, because xn is non-increasing, this minimum absolute difference
must equal xk−1 − xk.

The recursion xk+1 = xk−1 − xk becomes more familiar if we reverse the sequence. Let
y1 = x17, y2 = x16, and yk = x18−k for 1 ≤ k ≤ 17. Rearranging the recursion gives
yk+1 = yk + yk−1, the Fibonacci recursion. From this, the answer is the maximum integer
A = x17 = y1 such that the sequence yn is non-decreasing, follows the Fibonacci recursion,
and y17 = x1 < 1000.

The smallest non-trivial setup y1 = y2 = 1 gives y17 = 1597, the 17th Fibonacci number,
which is greater than 1000. As a result, A = 0 .

Remark. If we are trying to maximize y1, it is clearly not optimal for y2 to be greater
than y1. As a result, the optimal sequence is always the Fibonacci sequence, scaled by

some integer. The maximum value of an arbitrary xn is then
ö
1000
Fn

ù
, where Fn is the nth

Fibonacci number.
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Problem 11. In isosceles △ABC with AB = AC = 10, circles ω1 and ω2 are centered
at B and C with radii 6 and 8, respectively. Point G1 is on ω1 such that AG1 = 32

3

and AG1 intersects ω1 again at point F1. Point G2 is on ω2 such that AG2 = 8 and
AG2 intersects ω2 again at point F2. If the circumradius of △AF1F2 is 4, the positive
difference between the maximum and minimum value of G1G

2
2 can be expressed as m

n
,

where m and n are relatively prime positive integers.

Answer. 563

Solution. First, we proceed with Power of a Point, noticing that we can compute the
lengths of AF2 and AF1 easily given AG1, AG2, the radii of the circles and the length of
AB = AC. Indeed, we have:

AF1 · AG1 = (10− 6) · (10 + 6)

AF2 · AG2 = (10− 8) · (10 + 8)

Plugging in appropriate values, we find that AF1 = 6 and AF2 =
9
2
.

Now, we wish to relate F1F2 to G1G2 in some kind of way, as we are only given information
regarding △AF1F2 and want to use that to get information about G1G2 Here, we can

notice that F1F2 is parallel to G1G2 as AF1

AG1
= 6

32
3

= 9
16

and AF2

AG2
=

9
2

8
= 9

16
.

Now let’s use the information about △AF1F2’s circumradius. We know that via the
extended Law of Sines, F1F2

sinA
= 2R = 8, giving sinA = F1F2

8
. Now, because F1F2 and

G1G2 are parallel, we know that △AF1F2 ∼ AG1G2 with similarity ratio 16
9
. This tells

us that G1G2 =
16F1F2

9
= 128 sinA

9
.

Looking at △AG1G2, we proceed with using the Law of Cosines, as we know the lengths
AG1, AG2, and the other two variables are known in terms of angle A. Thus, we have:

cosA =

(
32
3

)2
+ 82 −

(
128 sinA

9

)2
2 · 32

3
· 8

Setting sinA =
√
1− cosA2, the equation becomes a simple quadratic where cosA = −1

8

or cosA = 31
32
. Thus there are only two possible values of angle A which correspond to the

minimum and maximum value of G1G
2
2 respectively. Remembering sin2A = 1− cos2A,

we have:

max
(
G1G

2
2

)
−min (G1G2) =

Å
128

9

ã2
·
Ç
1−
Å
−1

8

ã2å
−
Å
128

9

ã2
·
Ç
1−
Å
31

32

ã2å
=

560

3
.

Our desired sum is 560 + 3 = 563 .
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Problem 12. Andrew loves painting whales. There are 100 blue whales floating in a
circle. An integer n is chosen with 2 ≤ n ≤ 50. In a given move, Andrew chooses a set
of n consecutive whales that are floating adjacently, with the first and the last whales
being blue, and paints the first and last whales white. Find the sum of all values of n for
which Andrew can paint all 100 whales white after 50 moves.

Answer. 950

Solution. Number the whales from 0 to 99 in clockwise order, and let “whale k” refer
to whale m, where k ≡ m (mod 100) and 0 ≤ m ≤ 99. Because each move paints two
whales that are separated by n− 1, two whales numbered x and y can be painted white
if both are blue and x− y ≡ ±(n− 1) (mod 100).

Let (x, y) denote a move that paints whale x and whale y white. Then, WLOG, let the
move that paints whale 0 white be (0, n − 1). Now, if we want to paint whale 2n − 2
white, there is only one possible move, namely (2n− 2, 3n− 3), as whale n− 1 is already
painted white. We are forced to repeat this process, painting whales (2k − 2)(n − 1)
and (2k − 1)(n− 1) on move k until we run out of whales. There are then two cases to
consider.

Case 1: There are an odd number of whales achieved by adding n− 1 around the circle
until we get back to whale 0. This is bad, because each move paints two whales at a time.
Once we get to the last blue whale, its neighbors (separated by (n− 1)) will already be
painted. Then, it is clearly impossible to paint all 100 whales.

Case 2: There are an even number of whales achieved by adding n− 1 around the circle
until we get back to whale 0. In this case, repeating the process allows us to paint all
whales achieved in this way. By Bézout’s Lemma, all multiples of gcd(n − 1, 100) are
now painted white. Then, rotating this set of white whales to start at whale 1, 2, . . . as
necessary covers all whales.

It is now clear that we want to characterize when Case 2 occurs. Let g = gcd(n− 1, 100).
We want there to be an even number of multiples of g. The condition is then 2 | 100

g
, or

g | 50. In order for gcd(n− 1, 100) to divide 50, n− 1 cannot be a multiple of 4, as 50 is
not divisible by 4. Any other value of n works, as g must be a factor of 100.

Our final answer is the sum of all n, minus all n that are 1 more than a multiple of 4:
(2 + 3 + · · ·+ 50)− (5 + 9 + · · ·+ 49) = 1

2
· 49 · 52− 1

2
· 12 · 54 = 950 .
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