

We're Having Another Legitimate Exam!

Instructions:

- You will have 2 hours to complete the WHALE.
- All answers are integers between 0 and 999 inclusive.
- You may NOT use rulers, compasses, or calculators. You may only use pens, pencils, blank paper, and erasers.

1. Let n be the smallest positive perfect square such that $2024 n$ is a perfect cube. Compute \sqrt{n}.
2. An Olympic-size swimming pool is 50 meters long and can hold up to 2500 cubic meters of water. Daniel is building a to-scale model that is 0.1 meters wide and 0.008 meters deep. How much water can Daniel's model hold, in cubic centimeters?
3. A string of letters is called fruity if there exists a pair of consecutive letters that are the same. For example, APPLE is fruity, but BANANA is not. The word GRAPEFRUIT is written on a chalkboard. Andrew erases a random letter each minute until the chalkboard is blank. The probability that the string of letters on the chalkboard is never fruity can be expressed as $\frac{m}{n}$ where m and n are relatively prime positive integers. Find $m+n$.
4. Find the smallest prime p such that $p^{2}+2024$ has 27 divisors.
5. Point P lies on diameter $\overline{X Y}$ of a circle with radius 4. Chord $\overline{A B}$ passes through P and makes a 30° degree angle with $\overline{X Y}$. Let C be the reflection of B over $\overline{X Y}$. If $\frac{A P}{P B}=\frac{2}{3}$, then the area of $\triangle A B C$ can be expressed as $\frac{a \sqrt{b}}{c}$, where a and c are relatively prime positive integers and b is a squarefree integer. Find $a+b+c$.
6. Find the unique integer k such that the polynomial $x^{3}-14 x^{2}+62 x-k$ has three zeroes that are the side lengths of a right triangle.
7. Three standard six-sided dice are rolled, and let A be their sum. Then, the die with the lowest number is re-rolled. (If there are multiple dice with the lowest number, only one of them is re-rolled.) Let B be the sum of the dice after the re-roll. The probability that $B>A$ can be expressed as $\frac{n}{6^{4}}$. Find n.
8. How many ways are there to color the faces of a cube one of five colors such that no two faces sharing an edge are the same color? Rotations are considered distinct.
9. Square $A B C D$ has E as the midpoint of $\overline{A B}$. Let P be the point on $\overline{B C}$ such that the line $\overleftrightarrow{P D}$ intersects $\overline{E C}$ and $\overline{A C}$ at F and G respectively, and $\frac{A G}{G C}=\frac{C F}{F E}$. If $\frac{C P}{P B}$ can be expressed as $\frac{a+\sqrt{b}}{c}$, where a and c are relatively prime positive integers and b is a squarefree integer, find $a+b+c$.
10. Consider a sequence of non-negative integers defined with $x_{1}, x_{2}<1000$, and $x_{k}=\min \left\{\left|x_{i}-x_{j}\right|, 0<i<j<k\right\}$ for all integers $k \geq 3$. For example, $x_{3}=\left|x_{1}-x_{2}\right|$ and $x_{4}=\min \left\{\left|x_{1}-x_{2}\right|,\left|x_{1}-x_{3}\right|,\left|x_{2}-x_{3}\right|\right\}$. Find the greatest possible value of x_{17} over all such sequences.

Note that problems 11 and 12 are on the next page.
11. In isosceles $\triangle A B C$ with $A B=A C=10$, circles ω_{1} and ω_{2} are centered at B and C with radii 6 and 8 , respectively. Point G_{1} is on ω_{1} such that $A G_{1}=\frac{32}{3}$ and $\overline{A G_{1}}$ intersects ω_{1} again at point F_{1}. Point G_{2} is on ω_{2} such that $A G_{2}=8$ and $\overline{A G_{2}}$ intersects ω_{2} again at point F_{2}. If the circumradius of $\triangle A F_{1} F_{2}$ is 4 , the positive difference between the maximum and minimum value of $G_{1} G_{2}^{2}$ can be expressed as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
12. Andrew loves painting whales. There are 100 blue whales floating in a circle. An integer n is chosen with $2 \leq n \leq 50$. In a given move, Andrew chooses a set of n consecutive whales that are floating adjacently, with the first and the last whales being blue, and paints the first and last whales white. Find the sum of all values of n for which Andrew can paint all 100 whales white after 50 moves.

