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Problem 1. If a3 + a− 1 = 0, find a5 − a2 − a+ 6.

Answer. 5

Solution. In order to avoid solving the cubic, we can rewrite the first equation as

a3 = 1− a

and substitute wherever appropriate to reduce the degree of the expression we want to
find. Since a5 = a3 · a2, we see that

a5 − a2 − a+ 6 = (1− a)a2 − a2 − a+ 6 = −a3 − a+ 6.

Substituting again, we have

−a3 − a+ 6 = −(1− a)− a+ 6 = −1 + 6 = 5

as desired.
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Problem 2. How many ordered pairs of integers are there such that the absolute
difference between their product and their sum is 35?

Answer. 26

Solution. We want the number of integer solutions to |xy − x− y| = 35, which can be
split into two cases.

Case 1: xy − x− y = 35. Adding 1 to both sides and factoring using Simon’s Favorite
Factoring Trick produces

xy − x− y + 1 = 36 = (x− 1)(y − 1).

Since y − 1 is determined by x− 1, and x− 1 can be any integer that divides 36, the
number of solutions (x, y) to this equation is the number of factors of 36, both positive
AND negative. We know 36 = 22 · 32 has 9 factors, so this case has 2 · 9 = 18 solutions.

Case 2: xy − x− y = −35. We do the same thing:

xy − x− y + 1 = −34 = (x− 1)(y − 1).

Similarly, we want the number of factors of −34, both positive AND negative. Since
34 = 2 · 17 has four factors, this case has 2 · 4 = 8 solutions.
These cases give a total of 18 + 8 = 26 solutions, as desired.
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Problem 3. Point C lies on segment AB such that AC = 8 and CB = 10. Point D lies
in the plane such that ∠ADC ∼= ∠DBC. Find the maximum possible area of △DAB.

Answer. 108

Solution. Since ∠CAD ∼= ∠DAB, △CAD ∼ △DAB by AA similarity.

Then, CA
AD

= AD
BA

= 8
AD

= AD
18

, so AD = 12. Since this is the only necessary condition, D
can be any point on the circle centered at A with radius 12. We know that [DAB] =
1
2
· AB · h, where h is the length of the altitude from D to AB. h is maximized when

AD ⊥ AB, or h = AD = 12. Then, the area is 1
2
· 18 · 12 = 108 , as desired.
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Problem 4. How many ways are there to arrange the numbers 1, 2, 3, . . . , 9 in a row
such that, for any two integers a and b, if a | b, then a comes before b?

Answer. 1960

Solution. It is clear that 1 must be the first number, and that 5 and 7 may be inserted
anywhere afterwards, as they do not depend on nor affect any other numbers. So, we
will first focus on arranging 2, 3, 4, 6, 8, and 9.

Let’s start with the sequence (2, 4, 8) because the powers of 2 must occur in that order.
Then, placing 3 determines where 6 and 9 may go. We will casework on where 3 appears
relative to the powers of 2.

Case 1: If 3 appears before 2, resulting in (3, 2, 4, 8), then 6 has three possible spots;
right after the 2, 4, or 8. Once 6 is placed, 9 has five possible spots; anywhere that is not
before 3. This gives 3 · 5 = 15 sequences.

Case 2: If 3 appears between 2 and 4, resulting in (2, 3, 4, 8), 6 still has three possible
spots, but now, once 6 is placed, 9 has four spots. This gives 3 · 4 = 12 sequences.

Case 3: If 3 appears between 4 and 8, 6 has two possible spots, and once it is placed, 9
has three. This gives 2 · 3 = 6 sequences.

Case 4: If 3 appears after 8, there is only one spot to place 6; at the end, and that gives
two spots to place 9. This gives 1 · 2 = 2 sequences.

The total number of ways to arrange 2, 3, 4, 6, 8, and 9 is 15 + 12 + 6 + 2 = 35. Finally,
we multiply by 7 to place 5, and then multiply by 8 to place 7. Our final answer is
35 · 7 · 8 = 1960 as desired.
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Problem 5. Suppose △ABC has side lengths AB = 11, BC = 16. and CA = 13. Let
D be the midpoint of BC and E be the point where the angle bisector of A intersects
BC. Let the circumcircle of △ADE meet AC and AB again at F and G respectively.
Suppose M ̸= B is a point on AB such that MG = GB. Find the ratio [BME]

[CAME]
.

Answer. 4
5

Solution. We will find the ratio of the areas by computing most of the relevant side
lengths.

By the Angle Bisector Theorem,

EB

AB
=

EC

AC
=

EB

11
=

EC

13
.

And since EB + EC = BC = 16, solving the system gives EB = 22
3
and EC = 26

3
. We

also know that D is the midpoint of BC, meaning CD = 8 and DE = 26
3
− 8 = 2

3
.

Now, we apply Power of a Point on point B with respect to the circumcircle. That is,

BG ·BA = BE ·BD = 11 ·BG =
22

3
· 8

which gives BG = 16
3
. Finally, since G is the midpoint of BM , BM = 2BG = 32

3
. Now,

[BME]

[ABC]
=

BE

BC
· BM

BA
=

22
3

16
·

32
3

11
=

4

9

and [CAME]
[ABC]

= 1− 4
9
= 5

9
, so our answer is

[BME]

[CAME]
=

[BME]
[ABC]

[CAME]
[ABC]

=
4
9
5
9

= 4
5

as desired.
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Problem 6. Let A be the number of functions f : {1, 2, 3, 4, 5, 6, 7, 8, 9} −→
{1, 2, 3, 4, 5, 6, 7, 8, 9} such that n and f(n) are different parity and f(f(n)) ̸= n for
all 1 ≤ n ≤ 9. Find the remainder when A is divided by 1000.

Answer. 280

Solution. We will use Principle Inclusion-Exclusion to solve this problem. First, only
consider the condition n and f(n) have different parities. Then, there are 4 even numbers
for each of the 5 odd numbers to go to, and 5 odd numbers for each of the 4 even numbers
to go to, so there are 45 · 54 = 640000 total functions f satisfying this condition.

Now, we want to subtract the overcount, when f(f(n)) = n for at least 1 value of n.
However, these values of n must come in pairs. If f(a) = b and f(b) = a, then n = a
and n = b both satisfy the condition. Furthermore, a and b must be of different parities.
Thus, by PIE, the overcount is equal toÇ

5

1

åÇ
4

1

å
· k1 −

Ç
5

2

åÇ
4

2

å
· 2! · k2 +

Ç
5

3

åÇ
4

3

å
· 3! · k3 −

Ç
5

4

åÇ
4

4

å
· 4! · k4

where kx is the number of functions f given x pairs of (a, b) that satisfy f(a) = b and
f(b) = a, and their respective coefficients represent the number of ways to choose x pairs
of integers that are of different parities. Then, kx = 4(5−x) · 5(4−x) because there are
5− x odd numbers that are not yet fixed, and 4− x even numbers that are not yet fixed.
Evaluating, the overcount is equal to

5 · 4 · 44 · 53 − 10 · 6 · 2 · 43 · 52 + 10 · 4 · 6 · 42 · 51 − 5 · 1 · 24 · 41 · 50

= 640000− 192000 + 19200− 480

= 466720.

This means that A = 640000− 466720 = 173280, which has a remainder of 280 when
divided by 1000, as desired.
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Problem 7. Find all real x that satisfy the equation 2x
√
1− x2+2x2−

√
2x− 1 = 0.

Answer. −
√
2
2
,
√
2
2
,
√
6+

√
2

4

Solution 1. Since
√
1− x2 being defined implies x ∈ [−1, 1], it makes sense to do a

trigonometric substitution. Let x = cos (θ). (A similar solution exists for x = sin (θ).)

Then,
√
1− x2 =

√
1− cos2 (θ) =

√
sin2 (θ) = | sin (θ) |.

Note. Since x is defined in terms of cosine, we can, WLOG, restrict θ ∈ [0, π], as that
interval achieves the full range of cosine. This implies sin (θ) ≥ 0, which eliminates the
absolute value. This also means that we have to make sure our solutions for θ are in that
interval to eliminate extraneous solutions.

With this, the equation becomes

2 cos (θ) sin (θ) + 2 cos2 (θ)−
√
2 cos (θ)− 1 = 0.

We can use the double angle formulas and move the rest to the right side:

sin (2θ) + cos (2θ) =
√
2 cos (θ) .

Dividing by
√
2 results in a cosine subtraction:

√
2

2
sin (2θ) +

√
2

2
cos (2θ) = cos (θ)

sin
(π
4

)
sin (2θ) + cos

(π
4

)
cos (2θ) = cos (θ)

cos
(
2θ − π

4

)
= cos (θ) .

We now have an equation of the form cos (a) = cos (b), which is true when a = b or
a = −b up to adding multiples of 2π. That is, a − b = 2πk or a + b = 2πk for some
integer k. Applying this gives

θ − π

4
= 2πk OR 3θ − π

4
= 2πk

θ =
π

4
+ 2πk OR θ =

π

12
+

2π

3
k

θ =
π

12
,
π

4
,
3π

4
,
17π

12
.

The last solution for θ is not in [0, π], so it is extraneous. The other three produce

x = cos
(

π
12

)
, cos

(
π
4

)
, cos

(
3π
4

)
=

√
6+

√
2

4
,
√
2
2
,−

√
2
2

as desired.

7



Solution 2. Isolating the radical on the left and squaring both sides yieldsÄ
2x
√
1− x2

ä2
=
Ä
−2x2 +

√
2x+ 1

ä2
4x2 − 4x4 = 4x4 − 4

√
2x3 − 2x2 + 2

√
2x+ 1

0 = 8x4 − 4
√
2x3 − 6x2 + 2

√
2x+ 1.

Note. Squaring the equation loses information about the restrictions on x (specifically, x
and −2x2 +

√
2x+ 1 must be the same sign), so we will need to plug our solutions back

in to verify that they are not extraneous.

Since the irrational coefficients occur on odd-degree terms, we can let x = k
√
2, and

substituting results in a polynomial in k with integer coefficients:

8
Ä
k
√
2
ä4
− 4
√
2
Ä
k
√
2
ä3
− 6
Ä
k
√
2
ä2

+ 2
√
2
Ä
k
√
2
ä
+ 1 = 0

32k4 − 16k3 − 12k2 + 4k + 1 = 0.

The Rational Root Theorem produces k = ±1
2
as solutions, so we factor them out:

(2k + 1)(2k − 1)(8k2 − 4k − 1) = 0.

The quadratic then has zeroes k =
−(−4)±

√
(−4)2−4(8)(−1)

2(8)
= 1±

√
3

4
. So, x = k

√
2 has

solutions ±
√
2
2
,
√
2±

√
6

4
. Plugging these back in, it turns out that x =

√
2−

√
6

4
is extraneous,

while the other three work. This produces −
√
2
2
,
√
2
2
,
√
2+

√
6

4
as our answer, as desired.
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Problem 8. Compute the sum of all prime numbers p such that 37p2 − 47p+ 4 is the
square of an integer.

Answer. 97

Solution 1. We want to find all primes p such that 37p2 − 47p+ 4 = n2 for some integer
n. Subtracting 4 from both sides gives

37p2 − 47p = n2 − 4

p(37p− 47) = (n− 2)(n+ 2).

Since p divides the left side, it must also divide the right side, meaning p | n − 2 or
p | n+ 2. Equivalently, n ≡ 2 (mod p) or n ≡ −2 (mod p).

Note that 37p2 − 47p− 4 ≈ 36p2 = (6p)2. So, we should test n = 6p± 2.

37p2 − 47p+ 4 = (6p− 2)2 = 36p2 − 24p+ 4

p2 − 23p = 0

p = 23.

37p2 − 47p+ 4 = (6p+ 2)2 = 36p2 + 24p+ 4

p2 − 71p = 0

p = 71.

Both 23 and 71 are prime, so they are valid solutions.

We now aim to show that

(5p+ 2)2 < 37p2 − 47p+ 4 < (7p− 2)2

for sufficiently large p, as n = 5p + 2 and n = 7p − 2 are the next smallest and next
largest possibilities respectively.

The left inequality is true when p > 6 =⇒ 12p2 > 72p =⇒ 37p2 − 47p > 25p2 + 25p
=⇒ 37p2 − 47p+ 4 > 25p2 + 25p+ 4 > 25p2 + 20p+ 4 = (5p+ 2)2.

The right inequality is always true, since p is positive: 37p2 − 47p+ 4 < 49p2 − 28p+ 4
because 37p2 < 49p2 and −47p < −28p.

This means we need to check p = 2, p = 3, and p = 5 manually. p = 3 gives n = 14,
while the other two don’t produce integer n. This gives us three solutions in total with a
sum of 3 + 23 + 71 = 97 , as desired.
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Solution 2. We get n ≡ 2 (mod p) or n ≡ −2 (mod p) as from Solution 1. Consider the
first case and set n = kp+ 2 for some non-negative integer k. Then, plugging in gives

p(37p− 47) = (kp)(kp+ 4)

37p− 47 = k2p+ 4k

p =
4k + 47

37− k2
.

We can check all values of k that make the above expression positive, which would be
0 ≤ k ≤ 6. k = 4 =⇒ p = 3 and k = 6 =⇒ p = 71 both work, as 3 and 71 are prime,
while the others do not produce integer p.

Now, we consider the second case, setting n = kp−2 for some positive integer k. Plugging
in gives

p(37p− 47) = (kp− 4)(kp)

37p− 47 = k2p− 4k

p =
4k − 47

k2 − 37
.

Now, the values of k that make the above expression positive are 1 ≤ k ≤ 6 OR k ≥ 12;
however, k ≥ 12 clearly has k2 − 37 > 4k − 47, meaning p is never an integer in that
case. We check the other six possibilities manually, giving k = 6 =⇒ p = 23 as the only
solution.

So, the sum of our solutions is 3 + 71 + 23 = 97 , as desired.
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Problem 9. Find the number of sequences of integers (a0, a1, . . . , a50) with 0 ≤ an ≤ 5
such that:

a0 + a1 · 4 + a2 · 42 + . . .+ a50 · 450 = 2023 · 445

Answer. 138

Solution. Let S be the sum of the first 45 terms on the left, and T be the sum of the
remaining 6. Then, we have S + T = 2023 · 445. Since the right side is divisible by 445,
the left side must also be. And because T consists only of terms a · 4k where k ≥ 45, that
means that 445 | S.

Now, let az be the first non-zero term of the sequence. That is, let z be the unique
integer such that a0 = a1 = . . . az−1 = 0, and az ̸= 0.

If z > 44, a0 = a1 = · · · = a44 = 0 = S, which gives one case, and T must be 2023 · 445.

If z ≤ 44, then az = 4; otherwise, 4z+1 ∤ S. Furthermore, az+1 = az+2 = . . . a44 = 3,
because if any term ai ̸= 3 for i ≤ 44, 4i+1 ∤ S. This produces 45 cases, as 0 ≤ z ≤ 44.
This means that

S = 4 · 4z +
44∑

i=z+1

3 · 4i = 445 − 4z+1 + 4z+1 = 445.

For these 45 cases, T must be 2022 · 445.

Now, we manually check how many ways we can construct T by looking at T (mod 4i) for
46 ≤ i ≤ 50. Take the case where T = 2022 ·445. Because T ≡ 2 ·445 (mod 446), a45 must
be 2, as all other terms are 0 (mod 446). Then, T −2 ·445 = 2020 ·445 = 505 ·446, which is
1 ·446 (mod 447). As a result, a46 must be either 1 or 5. Continuing, we get that there are
3 possible sequences (a45, a46, a47, a48, a49, a50), namely (2, 1, 2, 3, 3, 1), (2, 5, 1, 3, 3, 1), and
(2, 5, 5, 2, 3, 1). A very similar process for T = 2023 · 445 yields the same three sequences,
with a45 = 3 instead of 2.

This means that there are 3 · 45 + 3 · 1 = 138 total sequences, as desired.

Note. The process of checking S and T (mod 4i) is analogous to writing 2023 · 445 in
base 4, except 4 = 104 and 5 = 114 are also allowed ”digits”.
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Problem 10. Let A =
∑99

n=1

√
10 +

√
n and B =

∑99
n=1

√
10−

√
n. Find B

A
.

Answer.
√
2− 1

Solution. Consider the sum

A+B =
99∑
n=1

»
10 +

√
n+
»

10−
√
n.

We can rewrite this as

99∑
n=1

…(»
10 +

√
n+
»

10−
√
n
)2

=
99∑
n=1

»
20 + 2

√
100− n

=
√
2 ·

99∑
n=1

»
10−

√
100− k =

√
2 ·

99∑
n=1

»
10−

√
k = A

√
2.

Then, we have A+B = A
√
2 and B

A
=
√
2− 1 as desired.
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Problem 11. Scalene △ABC has side lengths AB = 20 and BC = 23. If the line
connecting the incenter and centroid of the triangle is perpendicular to side AB, find the
area of △ABC.

Answer. 20
√
102

Solution. Let G be the centroid and I be the incenter of △ABC. Let M be the midpoint
of AC. Let b denote the length of AC, and s denote the semi-perimeter, equal to 20+23+b

2
.

We draw the altitudes from M , G, and C onto line
←→
AB, marking the feet of the altitudes

as E, D, and F , respectively.

Now, because
←→
IG is perpendicular to side AB, we know that DB = s− b = 20+23+b

2
− b =

43−b
2

. Additionally, because G divides BM into a ratio of 2:1, DB = 2
3
EB.

From here we will find EB. Since E is the foot of the perpendicular fromM , EB = AB−BF
2

.
Now, AB = 20 from the givens and BF = 23 cos∠CBF from right △CFB. We also
know that cos∠CBF = − cos∠ABC (as they are supplementary).

Let us denote m∠ABC = β for convenience. From Law of Cosines on △ABC, we know
that b2 = 202 + 232 − 2 · 20 · 23 · cos β. Thus, cos∠CBF = − cos β = b2−202−232

2·20·23 . We now

have that BF = 23 · b2−202−232

2·20·23 and that EB = AB−BF
2

= 20
2
− 23 · b2−202−232

4·20·23 .

But we also know that 2
3
EB = DB = 43−b

2
. Thus we get the equation:
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2

3

Å
10− 23 · b

2 − 202 − 232

4 · 20 · 23

ã
=

43− b

2
.

This yields the quadratic:

− b2

120
+

b

2
− 851

120
= 0.

This quadratic does have the isosceles triangle condition b = 23 as one solution, while

Vieta’s Formulas tell us that the other solution is −
1
2

− 1
120

− 23 = 60 − 23 = 37. Using

Heron’s Formula to finish, we have:

s =
20 + 23 + 37

2
= 40

K =
»

40 · (40− 23) · (40− 20) · (40− 37) = 20
√
102

and the answer is 20
√
102 as desired.

14

https://en.wikipedia.org/wiki/Vieta%27s_formulas
https://en.wikipedia.org/wiki/Heron%27s_formula


Problem 12. Define the sequence ad = d · (d+1) ·(d+2) for integers d ≥ 1. Suppose for
a positive integer n with gcd(n, 6) = 1, there are 140 values of k ≤ n where gcd(n, ak) = 1.
Find the sum of all possible values of n.

Answer. 1011

Solution. Call a positive integer k ≤ n relatively rhyme to n if gcd(n, ak) = 1.
Let χ(n) be the number of integers that are relatively rhyme to n. We aim to prove an
explicit formula for χ(n), when gcd(n, 6) = 1, or, equivalently, 2, 3 ∤ n.

We want to find how many positive integers k there are such that, for every prime p
dividing n, p ∤ ak = k(k + 1)(k + 2), or, equivalently, p ∤ k, k + 1, k + 2, since p ≥ 5. We
will instead look at the complement. Consider any prime p that divides n. A positive
integer k ≤ n is not relatively rhyme to n if p | k, p | k + 1, or p | k + 2. Out of every p
consecutive integers, there are three values of k that satisfy this, and since p | n, this
means that 3

p
of the integers between 1 and n inclusive are not relatively rhyme to n due

to their gcd being divisible by p.

We now claim that, if n = pe11 pe22 · · · p
ej
j , then

χ(n) = n ·
j∏

i=1

Å
1− 3

pi

ã
.

This is because each prime eliminates 3
pi

of the integers from being relatively rhyme to n.
That ratio is constant because primes are relative prime to each other, so removing all
integers that are 0,±1 (mod pi) does not change the density of integers that are 0,±1
(mod p) for any other prime p.

Note. This is an informal proof similar to that for proving the explicit formula for φ(n),
Euler’s Totient Function. χ(n) is very similar to φ(n), intended to eliminate three values
per prime instead of one.

Now that we have χ(n) = 140 = 22 · 5 · 7, we find all primes p such that p− 3 | 140, being
p = 5, 7, 13, 17, 23, 31, and 73. We casework on the largest prime that divides n.

If 73 | n, v73(n) is clearly 1 and χ
(

n
73

)
= 2, so n = 5 · 73 = 365 works.

If 31 | n, v31(n) is clearly 1 and χ
(

n
31

)
= 5, which has no solutions.

If 23 | n, v23(n) is clearly 1 and χ
(

n
23

)
= 7, which has no solutions.

If 17 | n, v17(n) is clearly 1 and χ
(

n
17

)
= 10, which has two solutions: n = 13 · 17 = 221,

and n = 52 · 17 = 425.

A quick check shows that 5, 7, or 13 being the largest prime dividing n yields no solutions.
Then, our answer is 365 + 221 + 425 = 1011 , as desired.
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