NYCMT 2023-2024 Playoffs Solutions

NYCMT

October 2023

Problem 1. If $a^{3}+a-1=0$, find $a^{5}-a^{2}-a+6$.
Answer. 5
Solution. In order to avoid solving the cubic, we can rewrite the first equation as

$$
a^{3}=1-a
$$

and substitute wherever appropriate to reduce the degree of the expression we want to find. Since $a^{5}=a^{3} \cdot a^{2}$, we see that

$$
a^{5}-a^{2}-a+6=(1-a) a^{2}-a^{2}-a+6=-a^{3}-a+6 .
$$

Substituting again, we have

$$
-a^{3}-a+6=-(1-a)-a+6=-1+6=5
$$

as desired.

Problem 2. How many ordered pairs of integers are there such that the absolute difference between their product and their sum is 35 ?

Answer. 26
Solution. We want the number of integer solutions to $|x y-x-y|=35$, which can be split into two cases.

Case 1: $x y-x-y=35$. Adding 1 to both sides and factoring using Simon's Favorite Factoring Trick produces

$$
x y-x-y+1=36=(x-1)(y-1) .
$$

Since $y-1$ is determined by $x-1$, and $x-1$ can be any integer that divides 36 , the number of solutions (x, y) to this equation is the number of factors of 36 , both positive AND negative. We know $36=2^{2} \cdot 3^{2}$ has 9 factors, so this case has $2 \cdot 9=18$ solutions.

Case 2: $x y-x-y=-35$. We do the same thing:

$$
x y-x-y+1=-34=(x-1)(y-1) .
$$

Similarly, we want the number of factors of -34 , both positive AND negative. Since $34=2 \cdot 17$ has four factors, this case has $2 \cdot 4=8$ solutions.
These cases give a total of $18+8=26$ solutions, as desired.

Problem 3. Point C lies on segment $\overline{A B}$ such that $A C=8$ and $C B=10$. Point D lies in the plane such that $\angle A D C \cong \angle D B C$. Find the maximum possible area of $\triangle D A B$.
Answer. 108
Solution. Since $\angle C A D \cong \angle D A B, \triangle C A D \sim \triangle D A B$ by AA similarity.

Then, $\frac{C A}{A D}=\frac{A D}{B A}=\frac{8}{A D}=\frac{A D}{18}$, so $A D=12$. Since this is the only necessary condition, D can be any point on the circle centered at A with radius 12 . We know that $[D A B]=$ $\frac{1}{2} \cdot A B \cdot h$, where h is the length of the altitude from D to $\overline{A B} . h$ is maximized when $\frac{2}{A D} \perp \overline{A B}$, or $h=A D=12$. Then, the area is $\frac{1}{2} \cdot 18 \cdot 12=108$, as desired.

Problem 4. How many ways are there to arrange the numbers $1,2,3, \ldots, 9$ in a row such that, for any two integers a and b, if $a \mid b$, then a comes before b ?

Answer. 1960
Solution. It is clear that 1 must be the first number, and that 5 and 7 may be inserted anywhere afterwards, as they do not depend on nor affect any other numbers. So, we will first focus on arranging $2,3,4,6,8$, and 9 .

Let's start with the sequence $(2,4,8)$ because the powers of 2 must occur in that order. Then, placing 3 determines where 6 and 9 may go. We will casework on where 3 appears relative to the powers of 2 .

Case 1: If 3 appears before 2 , resulting in $(3,2,4,8)$, then 6 has three possible spots; right after the 2,4 , or 8 . Once 6 is placed, 9 has five possible spots; anywhere that is not before 3 . This gives $3 \cdot 5=15$ sequences.

Case 2: If 3 appears between 2 and 4 , resulting in $(2,3,4,8), 6$ still has three possible spots, but now, once 6 is placed, 9 has four spots. This gives $3 \cdot 4=12$ sequences.

Case 3: If 3 appears between 4 and 8,6 has two possible spots, and once it is placed, 9 has three. This gives $2 \cdot 3=6$ sequences.

Case 4: If 3 appears after 8 , there is only one spot to place 6 ; at the end, and that gives two spots to place 9 . This gives $1 \cdot 2=2$ sequences.

The total number of ways to arrange $2,3,4,6,8$, and 9 is $15+12+6+2=35$. Finally, we multiply by 7 to place 5 , and then multiply by 8 to place 7 . Our final answer is $35 \cdot 7 \cdot 8=1960$ as desired.

Problem 5. Suppose $\triangle A B C$ has side lengths $A B=11, B C=16$. and $C A=13$. Let D be the midpoint of $\overline{B C}$ and E be the point where the angle bisector of A intersects $\overline{B C}$. Let the circumcircle of $\triangle A D E$ meet $\overline{A C}$ and $\overline{A B}$ again at F and G respectively. Suppose $M \neq B$ is a point on $\overline{A B}$ such that $M G=G B$. Find the ratio $\frac{[B M E]}{[C A M E]}$.
Answer. $\frac{4}{5}$
Solution. We will find the ratio of the areas by computing most of the relevant side lengths.

By the Angle Bisector Theorem,

$$
\frac{E B}{A B}=\frac{E C}{A C}=\frac{E B}{11}=\frac{E C}{13} .
$$

And since $E B+E C=B C=16$, solving the system gives $E B=\frac{22}{3}$ and $E C=\frac{26}{3}$. We also know that D is the midpoint of $\overline{B C}$, meaning $C D=8$ and $D E=\frac{26}{3}-8=\frac{2}{3}$.

Now, we apply Power of a Point on point B with respect to the circumcircle. That is,

$$
B G \cdot B A=B E \cdot B D=11 \cdot B G=\frac{22}{3} \cdot 8
$$

which gives $B G=\frac{16}{3}$. Finally, since G is the midpoint of $B M, B M=2 B G=\frac{32}{3}$. Now,

$$
\frac{[B M E]}{[A B C]}=\frac{B E}{B C} \cdot \frac{B M}{B A}=\frac{\frac{22}{3}}{16} \cdot \frac{\frac{32}{3}}{11}=\frac{4}{9}
$$

and $\frac{[C A M E]}{[A B C]}=1-\frac{4}{9}=\frac{5}{9}$, so our answer is

$$
\frac{[B M E]}{[C A M E]}=\frac{\frac{[B M E]}{[A B C]}}{\frac{[C A M E]}{[A B C]}}=\frac{\frac{4}{9}}{\frac{5}{9}}=\frac{4}{5}
$$

as desired.

Problem 6. Let A be the number of functions $f:\{1,2,3,4,5,6,7,8,9\} \longrightarrow$ $\{1,2,3,4,5,6,7,8,9\}$ such that n and $f(n)$ are different parity and $f(f(n)) \neq n$ for all $1 \leq n \leq 9$. Find the remainder when A is divided by 1000 .
Answer. 280
Solution. We will use Principle Inclusion-Exclusion to solve this problem. First, only consider the condition n and $f(n)$ have different parities. Then, there are 4 even numbers for each of the 5 odd numbers to go to, and 5 odd numbers for each of the 4 even numbers to go to, so there are $4^{5} \cdot 5^{4}=640000$ total functions f satisfying this condition.

Now, we want to subtract the overcount, when $f(f(n))=n$ for at least 1 value of n. However, these values of n must come in pairs. If $f(a)=b$ and $f(b)=a$, then $n=a$ and $n=b$ both satisfy the condition. Furthermore, a and b must be of different parities. Thus, by PIE, the overcount is equal to

$$
\binom{5}{1}\binom{4}{1} \cdot k_{1}-\binom{5}{2}\binom{4}{2} \cdot 2!\cdot k_{2}+\binom{5}{3}\binom{4}{3} \cdot 3!\cdot k_{3}-\binom{5}{4}\binom{4}{4} \cdot 4!\cdot k_{4}
$$

where k_{x} is the number of functions f given x pairs of (a, b) that satisfy $f(a)=b$ and $f(b)=a$, and their respective coefficients represent the number of ways to choose x pairs of integers that are of different parities. Then, $k_{x}=4^{(5-x)} \cdot 5^{(4-x)}$ because there are $5-x$ odd numbers that are not yet fixed, and $4-x$ even numbers that are not yet fixed. Evaluating, the overcount is equal to

$$
\begin{gathered}
5 \cdot 4 \cdot 4^{4} \cdot 5^{3}-10 \cdot 6 \cdot 2 \cdot 4^{3} \cdot 5^{2}+10 \cdot 4 \cdot 6 \cdot 4^{2} \cdot 5^{1}-5 \cdot 1 \cdot 24 \cdot 4^{1} \cdot 5^{0} \\
=640000-192000+19200-480 \\
=466720
\end{gathered}
$$

This means that $A=640000-466720=173280$, which has a remainder of 280 when divided by 1000 , as desired.

Problem 7. Find all real x that satisfy the equation $2 x \sqrt{1-x^{2}}+2 x^{2}-\sqrt{2} x-1=0$.
Answer.

$$
-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{6}+\sqrt{2}}{4}
$$

Solution 1. Since $\sqrt{1-x^{2}}$ being defined implies $x \in[-1,1]$, it makes sense to do a trigonometric substitution. Let $x=\cos (\theta)$. (A similar solution exists for $x=\sin (\theta)$.) Then, $\sqrt{1-x^{2}}=\sqrt{1-\cos ^{2}(\theta)}=\sqrt{\sin ^{2}(\theta)}=|\sin (\theta)|$.

Note. Since x is defined in terms of cosine, we can, WLOG, restrict $\theta \in[0, \pi]$, as that interval achieves the full range of cosine. This implies $\sin (\theta) \geq 0$, which eliminates the absolute value. This also means that we have to make sure our solutions for θ are in that interval to eliminate extraneous solutions.

With this, the equation becomes

$$
2 \cos (\theta) \sin (\theta)+2 \cos ^{2}(\theta)-\sqrt{2} \cos (\theta)-1=0 .
$$

We can use the double angle formulas and move the rest to the right side:

$$
\sin (2 \theta)+\cos (2 \theta)=\sqrt{2} \cos (\theta)
$$

Dividing by $\sqrt{2}$ results in a cosine subtraction:

$$
\begin{gathered}
\frac{\sqrt{2}}{2} \sin (2 \theta)+\frac{\sqrt{2}}{2} \cos (2 \theta)=\cos (\theta) \\
\sin \left(\frac{\pi}{4}\right) \sin (2 \theta)+\cos \left(\frac{\pi}{4}\right) \cos (2 \theta)=\cos (\theta) \\
\cos \left(2 \theta-\frac{\pi}{4}\right)=\cos (\theta)
\end{gathered}
$$

We now have an equation of the form $\cos (a)=\cos (b)$, which is true when $a=b$ or $a=-b$ up to adding multiples of 2π. That is, $a-b=2 \pi k$ or $a+b=2 \pi k$ for some integer k. Applying this gives

$$
\begin{gathered}
\theta-\frac{\pi}{4}=2 \pi k \text { OR } 3 \theta-\frac{\pi}{4}=2 \pi k \\
\theta=\frac{\pi}{4}+2 \pi k \text { OR } \theta=\frac{\pi}{12}+\frac{2 \pi}{3} k \\
\theta=\frac{\pi}{12}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{17 \pi}{12} .
\end{gathered}
$$

The last solution for θ is not in $[0, \pi]$, so it is extraneous. The other three produce $x=\cos \left(\frac{\pi}{12}\right), \cos \left(\frac{\pi}{4}\right), \cos \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{6}+\sqrt{2}}{4}, \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}$ as desired.

Solution 2. Isolating the radical on the left and squaring both sides yields

$$
\begin{gathered}
\left(2 x \sqrt{1-x^{2}}\right)^{2}=\left(-2 x^{2}+\sqrt{2} x+1\right)^{2} \\
4 x^{2}-4 x^{4}=4 x^{4}-4 \sqrt{2} x^{3}-2 x^{2}+2 \sqrt{2} x+1 \\
0=8 x^{4}-4 \sqrt{2} x^{3}-6 x^{2}+2 \sqrt{2} x+1
\end{gathered}
$$

Note. Squaring the equation loses information about the restrictions on x (specifically, x and $-2 x^{2}+\sqrt{2} x+1$ must be the same sign), so we will need to plug our solutions back in to verify that they are not extraneous.

Since the irrational coefficients occur on odd-degree terms, we can let $x=k \sqrt{2}$, and substituting results in a polynomial in k with integer coefficients:

$$
\begin{gathered}
8(k \sqrt{2})^{4}-4 \sqrt{2}(k \sqrt{2})^{3}-6(k \sqrt{2})^{2}+2 \sqrt{2}(k \sqrt{2})+1=0 \\
32 k^{4}-16 k^{3}-12 k^{2}+4 k+1=0
\end{gathered}
$$

The Rational Root Theorem produces $k= \pm \frac{1}{2}$ as solutions, so we factor them out:

$$
(2 k+1)(2 k-1)\left(8 k^{2}-4 k-1\right)=0
$$

The quadratic then has zeroes $k=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(8)(-1)}}{2(8)}=\frac{1 \pm \sqrt{3}}{4}$. So, $x=k \sqrt{2}$ has solutions $\pm \frac{\sqrt{2}}{2}, \frac{\sqrt{2} \pm \sqrt{6}}{4}$. Plugging these back in, it turns out that $x=\frac{\sqrt{2}-\sqrt{6}}{4}$ is extraneous, while the other three work. This produces $-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}+\sqrt{6}}{4}$ as our answer, as desired.

Problem 8. Compute the sum of all prime numbers p such that $37 p^{2}-47 p+4$ is the square of an integer.

Answer. 97
Solution 1. We want to find all primes p such that $37 p^{2}-47 p+4=n^{2}$ for some integer n. Subtracting 4 from both sides gives

$$
\begin{gathered}
37 p^{2}-47 p=n^{2}-4 \\
p(37 p-47)=(n-2)(n+2) .
\end{gathered}
$$

Since p divides the left side, it must also divide the right side, meaning $p \mid n-2$ or $p \mid n+2$. Equivalently, $n \equiv 2(\bmod p)$ or $n \equiv-2(\bmod p)$.

Note that $37 p^{2}-47 p-4 \approx 36 p^{2}=(6 p)^{2}$. So, we should test $n=6 p \pm 2$.

$$
\begin{gathered}
37 p^{2}-47 p+4=(6 p-2)^{2}=36 p^{2}-24 p+4 \\
p^{2}-23 p=0 \\
p=23 \\
37 p^{2}-47 p+4=(6 p+2)^{2}=36 p^{2}+24 p+4 \\
p^{2}-71 p=0 \\
p=71 .
\end{gathered}
$$

Both 23 and 71 are prime, so they are valid solutions.
We now aim to show that

$$
(5 p+2)^{2}<37 p^{2}-47 p+4<(7 p-2)^{2}
$$

for sufficiently large p, as $n=5 p+2$ and $n=7 p-2$ are the next smallest and next largest possibilities respectively.

The left inequality is true when $p>6 \Longrightarrow 12 p^{2}>72 p \Longrightarrow 37 p^{2}-47 p>25 p^{2}+25 p$ $\Longrightarrow 37 p^{2}-47 p+4>25 p^{2}+25 p+4>25 p^{2}+20 p+4=(5 p+2)^{2}$.

The right inequality is always true, since p is positive: $37 p^{2}-47 p+4<49 p^{2}-28 p+4$ because $37 p^{2}<49 p^{2}$ and $-47 p<-28 p$.

This means we need to check $p=2, p=3$, and $p=5$ manually. $p=3$ gives $n=14$, while the other two don't produce integer n. This gives us three solutions in total with a sum of $3+23+71=97$, as desired.

Solution 2. We get $n \equiv 2(\bmod p)$ or $n \equiv-2(\bmod p)$ as from Solution 1. Consider the first case and set $n=k p+2$ for some non-negative integer k. Then, plugging in gives

$$
\begin{gathered}
p(37 p-47)=(k p)(k p+4) \\
37 p-47=k^{2} p+4 k \\
p=\frac{4 k+47}{37-k^{2}} .
\end{gathered}
$$

We can check all values of k that make the above expression positive, which would be $0 \leq k \leq 6 . k=4 \Longrightarrow p=3$ and $k=6 \Longrightarrow p=71$ both work, as 3 and 71 are prime, while the others do not produce integer p.

Now, we consider the second case, setting $n=k p-2$ for some positive integer k. Plugging in gives

$$
\begin{gathered}
p(37 p-47)=(k p-4)(k p) \\
37 p-47=k^{2} p-4 k \\
p=\frac{4 k-47}{k^{2}-37} .
\end{gathered}
$$

Now, the values of k that make the above expression positive are $1 \leq k \leq 6$ OR $k \geq 12$; however, $k \geq 12$ clearly has $k^{2}-37>4 k-47$, meaning p is never an integer in that case. We check the other six possibilities manually, giving $k=6 \Longrightarrow p=23$ as the only solution.

So, the sum of our solutions is $3+71+23=97$, as desired.

Problem 9. Find the number of sequences of integers $\left(a_{0}, a_{1}, \ldots, a_{50}\right)$ with $0 \leq a_{n} \leq 5$ such that:

$$
a_{0}+a_{1} \cdot 4+a_{2} \cdot 4^{2}+\ldots+a_{50} \cdot 4^{50}=2023 \cdot 4^{45}
$$

Answer. 138
Solution. Let S be the sum of the first 45 terms on the left, and T be the sum of the remaining 6 . Then, we have $S+T=2023 \cdot 4^{45}$. Since the right side is divisible by 4^{45}, the left side must also be. And because T consists only of terms $a \cdot 4^{k}$ where $k \geq 45$, that means that $4^{45} \mid S$.

Now, let a_{z} be the first non-zero term of the sequence. That is, let z be the unique integer such that $a_{0}=a_{1}=\ldots a_{z-1}=0$, and $a_{z} \neq 0$.

If $z>44, a_{0}=a_{1}=\cdots=a_{44}=0=S$, which gives one case, and T must be $2023 \cdot 4^{45}$.
If $z \leq 44$, then $a_{z}=4$; otherwise, $4^{z+1} \nmid S$. Furthermore, $a_{z+1}=a_{z+2}=\ldots a_{44}=3$, because if any term $a_{i} \neq 3$ for $i \leq 44,4^{i+1}+S$. This produces 45 cases, as $0 \leq z \leq 44$. This means that

$$
S=4 \cdot 4^{z}+\sum_{i=z+1}^{44} 3 \cdot 4^{i}=4^{45}-4^{z+1}+4^{z+1}=4^{45}
$$

For these 45 cases, T must be $2022 \cdot 4^{45}$.
Now, we manually check how many ways we can construct T by looking at $T\left(\bmod 4^{i}\right)$ for $46 \leq i \leq 50$. Take the case where $T=2022 \cdot 4^{45}$. Because $T \equiv 2 \cdot 4^{45}\left(\bmod 4^{46}\right), a_{45}$ must be 2 , as all other terms are $0\left(\bmod 4^{46}\right)$. Then, $T-2 \cdot 4^{45}=2020 \cdot 4^{45}=505 \cdot 4^{46}$, which is $1 \cdot 4^{46}\left(\bmod 4^{47}\right)$. As a result, a_{46} must be either 1 or 5 . Continuing, we get that there are 3 possible sequences ($a_{45}, a_{46}, a_{47}, a_{48}, a_{49}, a_{50}$), namely ($2,1,2,3,3,1$), $(2,5,1,3,3,1)$, and $(2,5,5,2,3,1)$. A very similar process for $T=2023 \cdot 4^{45}$ yields the same three sequences, with $a_{45}=3$ instead of 2 .

This means that there are $3 \cdot 45+3 \cdot 1=138$ total sequences, as desired.
Note. The process of checking S and $T\left(\bmod 4^{i}\right)$ is analogous to writing $2023 \cdot 4^{45}$ in base 4 , except $4=10_{4}$ and $5=11_{4}$ are also allowed "digits".

Problem 10. Let $A=\sum_{n=1}^{99} \sqrt{10+\sqrt{n}}$ and $B=\sum_{n=1}^{99} \sqrt{10-\sqrt{n}}$. Find $\frac{B}{A}$.
Answer. $\sqrt{2}-1$
Solution. Consider the sum

$$
A+B=\sum_{n=1}^{99} \sqrt{10+\sqrt{n}}+\sqrt{10-\sqrt{n}}
$$

We can rewrite this as

$$
\begin{aligned}
& \sum_{n=1}^{99} \sqrt{(\sqrt{10+\sqrt{n}}+\sqrt{10-\sqrt{n}})^{2}}=\sum_{n=1}^{99} \sqrt{20+2 \sqrt{100-n}} \\
& =\sqrt{2} \cdot \sum_{n=1}^{99} \sqrt{10-\sqrt{100-k}}=\sqrt{2} \cdot \sum_{n=1}^{99} \sqrt{10-\sqrt{k}}=A \sqrt{2} .
\end{aligned}
$$

Then, we have $A+B=A \sqrt{2}$ and $\frac{B}{A}=\sqrt{2}-1$ as desired.

Problem 11. Scalene $\triangle A B C$ has side lengths $A B=20$ and $B C=23$. If the line connecting the incenter and centroid of the triangle is perpendicular to side $A B$, find the area of $\triangle A B C$.
$\begin{array}{ll}\text { Answer. } & 20 \sqrt{102}\end{array}$

Solution. Let G be the centroid and I be the incenter of $\triangle A B C$. Let M be the midpoint of $\overline{A C}$. Let b denote the length of $\overline{A C}$, and s denote the semi-perimeter, equal to $\frac{20+23+b}{2}$. We draw the altitudes from M, G, and C onto line $\overleftrightarrow{A B}$, marking the feet of the altitudes as E, D, and F, respectively.

Now, because $\overleftrightarrow{I G}$ is perpendicular to side $\overline{A B}$, we know that $D B=s-b=\frac{20+23+b}{2}-b=$ $\frac{43-b}{2}$. Additionally, because G divides $\overline{B M}$ into a ratio of $2: 1, D B=\frac{2}{3} E B$.

From here we will find $E B$. Since E is the foot of the perpendicular from $M, E B=\frac{A B-B F}{2}$. Now, $A B=20$ from the givens and $B F=23 \cos \angle C B F$ from right $\triangle C F B$. We also know that $\cos \angle C B F=-\cos \angle A B C$ (as they are supplementary).

Let us denote $m \angle A B C=\beta$ for convenience. From Law of Cosines on $\triangle A B C$, we know that $b^{2}=20^{2}+23^{2}-2 \cdot 20 \cdot 23 \cdot \cos \beta$. Thus, $\cos \angle C B F=-\cos \beta=\frac{b^{2}-20^{2}-23^{2}}{2 \cdot 20 \cdot 23}$. We now have that $B F=23 \cdot \frac{b^{2}-20^{2}-23^{2}}{2 \cdot 20 \cdot 23}$ and that $E B=\frac{A B-B F}{2}=\frac{20}{2}-23 \cdot \frac{b^{2}-20^{2}-23^{2}}{4 \cdot 20 \cdot 23}$.

But we also know that $\frac{2}{3} E B=D B=\frac{43-b}{2}$. Thus we get the equation:

$$
\frac{2}{3}\left(10-23 \cdot \frac{b^{2}-20^{2}-23^{2}}{4 \cdot 20 \cdot 23}\right)=\frac{43-b}{2}
$$

This yields the quadratic:

$$
-\frac{b^{2}}{120}+\frac{b}{2}-\frac{851}{120}=0 .
$$

This quadratic does have the isosceles triangle condition $b=23$ as one solution, while Vieta's Formulas tell us that the other solution is $-\frac{\frac{1}{2}}{-\frac{1}{120}}-23=60-23=37$. Using Heron's Formula to finish, we have:

$$
\begin{gathered}
s=\frac{20+23+37}{2}=40 \\
K=\sqrt{40 \cdot(40-23) \cdot(40-20) \cdot(40-37)}=20 \sqrt{102}
\end{gathered}
$$

and the answer is $20 \sqrt{102}$ as desired.

Problem 12. Define the sequence $a_{d}=d \cdot(d+1) \cdot(d+2)$ for integers $d \geq 1$. Suppose for a positive integer n with $\operatorname{gcd}(n, 6)=1$, there are 140 values of $k \leq n$ where $\operatorname{gcd}\left(n, a_{k}\right)=1$. Find the sum of all possible values of n.
Answer. 1011
Solution. Call a positive integer $k \leq n$ relatively rhyme to n if $\operatorname{gcd}\left(n, a_{k}\right)=1$.
Let $\chi(n)$ be the number of integers that are relatively rhyme to n. We aim to prove an explicit formula for $\chi(n)$, when $\operatorname{gcd}(n, 6)=1$, or, equivalently, $2,3 \nmid n$.

We want to find how many positive integers k there are such that, for every prime p dividing $n, p \nmid a_{k}=k(k+1)(k+2)$, or, equivalently, $p \nmid k, k+1, k+2$, since $p \geq 5$. We will instead look at the complement. Consider any prime p that divides n. A positive integer $k \leq n$ is not relatively rhyme to n if $p|k, p| k+1$, or $p \mid k+2$. Out of every p consecutive integers, there are three values of k that satisfy this, and since $p \mid n$, this means that $\frac{3}{p}$ of the integers between 1 and n inclusive are not relatively rhyme to n due to their gcd being divisible by p.

We now claim that, if $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{j}^{e_{j}}$, then

$$
\chi(n)=n \cdot \prod_{i=1}^{j}\left(1-\frac{3}{p_{i}}\right) .
$$

This is because each prime eliminates $\frac{3}{p_{i}}$ of the integers from being relatively rhyme to n. That ratio is constant because primes are relative prime to each other, so removing all integers that are $0, \pm 1\left(\bmod p_{i}\right)$ does not change the density of integers that are $0, \pm 1$ $(\bmod p)$ for any other prime p.

Note. This is an informal proof similar to that for proving the explicit formula for $\varphi(n)$, Euler's Totient Function. $\chi(n)$ is very similar to $\varphi(n)$, intended to eliminate three values per prime instead of one.

Now that we have $\chi(n)=140=2^{2} \cdot 5 \cdot 7$, we find all primes p such that $p-3 \mid 140$, being $p=5,7,13,17,23,31$, and 73 . We casework on the largest prime that divides n.

If $73 \mid n, v_{73}(n)$ is clearly 1 and $\chi\left(\frac{n}{73}\right)=2$, so $n=5 \cdot 73=365$ works.
If $31 \mid n, v_{31}(n)$ is clearly 1 and $\chi\left(\frac{n}{31}\right)=5$, which has no solutions.
If $23 \mid n, v_{23}(n)$ is clearly 1 and $\chi\left(\frac{n}{23}\right)=7$, which has no solutions.
If $17 \mid n, v_{17}(n)$ is clearly 1 and $\chi\left(\frac{n}{17}\right)=10$, which has two solutions: $n=13 \cdot 17=221$, and $n=5^{2} \cdot 17=425$.

A quick check shows that 5,7 , or 13 being the largest prime dividing n yields no solutions. Then, our answer is $365+221+425=1011$, as desired.

