
1 Introduction

Make sure to submit all progress you make on the problems, as they can earn partial credit. All questions
require full justification. Write solutions to different problems on different sheets of paper. Label the top
right of each page you submit with your name, problem number, and “Page x of y”, where this is the xth page
you’re submitting for this problem, out of y pages for the problem. For a geometry problem, make sure to
include a clear diagram at the start of your solution. (This will help you out too!) Some problems have two
parts; often the first part is easier than the second. Good luck!

2 Problems

Problem 1 (5 Points). Let acute triangle ABC have incenter I. Let the B-angle bisector and C-angle bisector
intersect the altitude from A at X and Y , respectively. (The incenter is the intersection of the angle bisectors of
a triangle.)

(a) Compute the angles of triangle IXY in terms of the angles of triangle ABC.

(b) Prove that AI is tangent to the circumcircle of triangle IXY . (Hint: What angle properties must the
tangent to a circumcircle at a vertex satisfy?)

Problem 2 (6 Points). Let n be a positive integer, and let a0 = n. Let ak+1 = ak −
⌊√

ak
⌋
for all nonnegative

integers k.

(a) If n = 10000, find the smallest k such that ak = 0.

(b) Find the smallest positive integer n such that a100 ̸= 0.

Problem 3 (7 Points). A positive integer n is written on the board. Alice and Bob take turns erasing the
current number m from the board and replacing it with m− a2 for some positive integer a, with Alice going
first. The first player to write a negative integer loses.

(a) If n = 10, who wins this game?

(b) Are there infinitely many values of n for which Bob wins this game?

Problem 4 (8 Points). Let Sn = {1, 2, . . . , n}. For which positive integers n > 1 do there exist two permutations,
π1 and π2, from Sn to Sn satisfying

π1(k) ≡ k · π2(k) (mod n)

for all k ∈ Sn?

Problem 5 (9 Points). Point D is chosen on segment BC of scalene triangle ABC. Points X and Y are chosen
on AB and AC, respectively, such that AXDY is a parallelogram. Prove that as D varies, the circumcircle of
AXY passes through a fixed point T ̸= A.
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3 Solutions

Problem 1

Let acute triangle ABC have incenter I. Let the B-angle bisector and C-angle bisector intersect the altitude
from A at X and Y , respectively. (The incenter is the intersection of the angle bisectors of a triangle.)

(a) Compute the angles of triangle IXY in terms of the angles of triangle ABC.

(b) Prove that AI is tangent to the circumcircle of triangle IXY . (Hint: What angle properties must
the tangent to a circumcircle at a vertex satisfy?)

Solution.

A

B C

I

X

Y

(a) We can compute
∠IY X = 90◦ − ∠ICB = 90◦ − ∠C/2.

Similarly, ∠IXY = 90◦ − ∠B/2. Since the angles of △IXY must add to 180◦, this means ∠XIY =
90◦ − ∠A/2. (Another way to see this is by ∠BIC = 90◦ + ∠A/2.)

(b) In order to prove that AI is tangent to (IXY ), we must show ∠IXY = ∠AIY . We’ve already computed
∠IXY = 90◦ − ∠B/2, so we need to show ∠AIY = 90◦ − ∠B/2. We have

∠AIY = 180◦ − ∠AIC = 180◦ − (90◦ + ∠B/2) = 90◦ − ∠B/2 = ∠IXY,

so we’re done.
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Problem 2

Let n be a positive integer, and let a0 = n. Let ak+1 = ak −
⌊√

ak
⌋
for all nonnegative integers k.

(a) If n = 10000, find the smallest k such that ak = 0.

(b) Find the smallest positive integer n such that a100 ̸= 0.

Solution.

(a) If ai = m2, then ai+1 = m2 −m, and then

ai+2 = ai+1 − (m− 1) = m2 − 2m+ 1 = (m− 1)2.

This means, as a0 = 1002, that a2 = 992, a4 = 982, and so on, until a198 = 1, and then a199 = 0. Thus,
the smallest k is k = 199.

(b) Taking from the previous part, if a0 = 502 then it takes 99 steps to reach 0. This means for a0 = 502 + 50
that it would take 100 steps.

We claim a0 = 502 + 50 + 1 = 2551 that it takes 101 steps, making the answer 2551. We would then have
a1 = 2501. Now if ai = k2 + 1, then ai+1 = k2 − k + 1, and then

ai+2 = ai+1 − (k − 1) = (k − 1)2 + 1.

This means a3 = 492 +1, a5 = 482 +1, and so on, until a99 = 12 +1 = 2. Then a100 = 1 ̸= 0, and a101 = 0.
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Problem 3

A positive integer n is written on the board. Alice and Bob take turns erasing the current number m from
the board and replacing it with m− a2 for some positive integer a, with Alice going first. The first player
to write a negative integer loses.

(a) If n = 10, who wins this game?

(b) Are there infinitely many values of n for which Bob wins this game?

Solution.

(a) We claim Bob wins this game. If Alice subtracts 1 or 9, then Bob can subtract 9 or 1, respectively, to win
the game.

Suppose Alice subtracts 4, so Bob is left with 6. Then Bob can subtract 4, and it’s clear to see that from
2, Alice will lose. (Bob can subtract 1 as well to win.)

(b) We claim there are infinitely many values of n for which Bob wins. Suppose otherwise, so N is the largest
positive integer for which Bob wins.

Consider N2 +N + 1. Alice can subtract any of {1, 4, . . . , N2}; no matter which number she subtracts,
Bob is left with a number at least N +1. However, since we have assumed N is the largest positive integer
that’s a losing position, this means no matter what number Alice subtracts, it results in a winning position.
This means N2 +N + 1 must have actually been a losing position for Alice, contradicting the maximality
of N .
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Problem 4

Let Sn = {1, 2, . . . , n}. For which positive integers n > 1 do there exist two permutations, π1 and π2, from
Sn to Sn satisfying

π1(k) ≡ k · π2(k) (mod n)

for all k ∈ Sn?

Solution. The answer is only n = 2. The construction is π1(k) ≡ π2(k) ≡ k.

We claim that if d | n and d | m, then d | π2(m). Note that if π2(k) is a multiple of d for some k not a multiple
of d, then π1 would take on a value that is a multiple of d at least n

d + 1 times: when the input is a multiple of
d, and for k. This is a contradiction. Thus, π2(k) being a multiple of d means k is a multiple of d. However, π2
must be a multiple of d exactly n

d times, so the converse of this is true, which is the desired claim.

Note π1(0) = π2(0) = 0 from the above claim. Now, if n is not square-free, then there exists an m ≠ n such that
m | n but n | m2. We know π2(m) is a multiple of m, so π1(m) is a multiple of m2, and is thus a multiple of n,
a contradiction. Thus, square-free n certainly fail.

Now suppose n is square-free. Let n = pm, where p is prime not equal to 2 and m is relatively prime to p. Then
π2 must map {m, 2m, . . . , (p− 1)m} to itself by the claim, and thus π1 must also do this. But then

mp−1(p− 1)! ≡
p−1∏
k=1

π1(km) ≡ mp−1(p− 1)!

p−1∏
k=1

π2(km) ≡ m2(p−1)((p− 1)!)2 (mod n).

However, mp−1 ≡ 1 (mod p) and (p− 1)! ≡ −1 (mod p), so this says −1 ≡ 1 (mod p), a contradiction.
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Problem 5

Point D is chosen on segment BC of scalene triangle ABC. Points X and Y are chosen on AB and AC,
respectively, such that AXDY is a parallelogram. Prove that as D varies, the circumcircle of AXY passes
through a fixed point T ̸= A.

A

B C
D

X

Y

O

S

TE

K

We present three solutions, in increasing order of machinery.

Solution 1. Let S be the intersection of the tangents to (ABC) at B and C. Let E be the intersection of
(BDX), (CDY ), and (AXY ) (which exists by Miquel), let K be the intersection of AS and BC, and let T be
the intersection of AS and (BOC). We claim T is the fixed point.

We have ∠BED = ∠DBS = A and ∠CED = A. This means ∠BEC = 2A, so E lies on (BOC). Since ED
bisects ∠BEC, this means E, D, and S are collinear.

By the shooting lemma, SD × SE = SK × ST , so TEDK is cyclic. Now

∡ATE = ∡KTE = ∡KDE = ∡BDE = ∡BXE = ∡AXE,

so T lies on (AEX), as desired.

Solution 2. Set A to be the origin. Let X = k
−→
B , and Y = (1− k)

−→
C , for some real k. Perform a

√
bc-inversion

centered at A, followed by a reflection about the A-angle bisector. Then X ′ = 1
k

−→
C and Y ′ = 1

1−k

−→
B . We want to

show as k varies, the line X ′Y ′ passes through a fixed point. We claim it always passes through
−→
B +

−→
C . Indeed,

we have −→
B +

−→
C = kX ′ + (1− k)Y ′

is a weighted average of X ′ and Y ′, as desired.

Solution 3. Let f(•) denote Pow(AXY )(•)− Pow(ABC)(•), which is a linear function in •. Let BD = kBC and
CD = (1− k)BC. Then f(B) = kc2 and f(C) = (1− k)b2. Then, because K is on the A-symmedian,

f(K) =
c2

b2 + c2
f(B) +

b2

b2 + c2
f(C) =

b2c2

b2 + c2

is independent of k. Since Pow(ABC)(K) is also constant, that means Pow(AXY )(K) is constant. This means
that the line KA must intersect (AXY ) at a fixed point, as desired.
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