Name: \qquad

Team : \qquad

1. \qquad
2. \qquad
Math Majors of America Tournament for High Schools

2022 Team Round

1. Rectangle $A B C D$ has $A B=8$ and $B C=13$. Points P_{1} and P_{2} lie on $A B$ and $C D$ with $P_{1} P_{2} \| B C$. Points Q_{1} and Q_{2} lie on $B C$ and $D A$ with $Q_{1} Q_{2} \| A B$. Find the area of quadrilateral $P_{1} Q_{1} P_{2} Q_{2}$.
2. How many ways are there to fill in a three by three grid of cells with 0 's and 2 's, one number in each cell, such that each two by two contiguous subgrid contains exactly three 2 's and one 0 ?
3. There are 522 people at a beach, each of whom owns a cat, a dog, both, or neither. If 20 percent of cat-owners also own a dog, 70 percent of dog-owners do not own a cat, and 50 percent of people who don't own a cat also don't own a dog, how many people own neither type of pet?
4. How many ways are there to choose three digits A, B, C with $1 \leq A \leq 9$ and $0 \leq B, C \leq 9$ such that $\overline{A B C}_{b}$ is even for all choices of base b with $b \geq 10$?
5. Equilateral triangle $\triangle A B C$ has side length 6. Points D and E lie on $\overline{B C}$ such that $B D=C E$ and
6. \qquad B, D, E, C are collinear in that order. Points F and G lie on $\overline{A B}$ such that $\overline{F D} \perp \overline{B C}$, and $G F=G A$. If the minimum possible value of the sum of the areas of $\triangle B F D$ and $\triangle D G E$ can be expressed as $\frac{a \sqrt{b}}{c}$ for positive integers a, b, c with $\operatorname{gcd}(a, c)=1$ and b squarefree, find $a+b+c$.
7. Prair writes the letters A, B, C, D, and E such that neither vowel are written first, and they are not adjacent; such that there exists at least one pair of adjacent consonants; and such that exactly five pairs of letters are in alphabetical order. How many possible ways could Prair have ordered the letters?
8. $\triangle A B C$ satisfies $A B=16, B C=30$, and $\angle A B C=90^{\circ}$. On the circumcircle of $\triangle A B C$, let P be the midpoint of arc $\widehat{A C}$ not containing B, and let X and Y lie on lines $A B$ and $B C$, respectively, with $P X \perp A B$ and $P Y \perp B C$. Find $X Y^{2}$.
9. In the number puzzle below, each cell contains a digit, each cell in the same bolded region has the same digit, and cells in different bolded regions have different digits. The answers to the clues are to be read as three-, four-, or five-digit numbers. Find the unique solution to the puzzle, given that no answer to any clue has a leading 0 .

DOWN

2. 1 less than a multiple of 13
3. Sum of digits is at least 25
4. Positive difference of this number and 1-Down is divisible by 9
5. Let f be a monic cubic polynomial such that the sum of the coefficients of f is 5 and such that the sum of the roots of f is 1 . Find the absolute value of the sum of the cubes of the roots of f.
6. Suppose that $A_{1} A_{2} A_{3}$ is a triangle with $A_{1} A_{2}=16$ and $A_{1} A_{3}=A_{2} A_{3}=10$. For each integer $n \geq 4$, set A_{n} to be the circumcenter of triangle $A_{n-1} A_{n-2} A_{n-3}$. There exists a unique point Z lying in the interiors of the circumcircles of triangles $A_{k} A_{k+1} A_{k+2}$ for all integers $k \geq 1$. If $Z A_{1}^{2}+Z A_{2}^{2}+Z A_{3}^{2}+Z A_{4}^{2}$ can be expressed as $\frac{a}{b}$ for positive integers a, b with $\operatorname{gcd}(a, b)=1$, find $a+b$.
7. Every time Josh and Ron tap their screens, one of three emojis appears, each with equal probability: barbecue, bacon, or burger. Josh taps his screen until he gets a sequence of barbecue, bacon, and burger consecutively (in that specific order.) Ron taps his screen until he gets a sequence of three bacons in a row. Let M and N be the expected number of times Josh and Ron tap their screens, respectively. What is $|M-N|$?
8. Let triangle $A B C$ with incenter I satisfy $A B=3, A C=4$, and $B C=5$. Suppose that D and E lie on $A B$ and $A C$, respectively, such that D, I, and E are collinear and $D E \perp A I$. Points P and Q lie on side $B C$ such that $I P=B P$ and $I Q=C Q$, and lines $D P$ and $E Q$ meet at S. Compute $S I^{2}$.
