ARML Team Questions - 2005 - T-1. ABCD is a convex quadrilateral with AC = BC = 10 and AB + 1 = AD = CD = 13. Compute the area of ABCD. - T-2. Compute the smallest positive integer K such that K and K+1 each have more than four positive factors. - T-3. Let A, R, M, and L be positive real numbers such that $\log(A \cdot L) + \log(A \cdot M) = 2$, $\log(M \cdot L) + \log(M \cdot R) = 3$, and $\log(R \cdot A) + \log(R \cdot L) = 4$. Compute the value of the product $A \cdot R \cdot M \cdot L$. - T-4. Let a and b be integers with b>a>1. If $8\sqrt{.\overline{a}_b}=\frac{1}{.\overline{a}_b}$, compute the least value of b. - T-5. Let N = .abcdef. If N has three 2's in a row in every string abcdef, but no more than three 2's in a row in the entire decimal expression for N, compute the number of distinct N. - T-6. For x and y in radian measure with $0 \le x, y \le 2\pi$, compute the largest possible value of the sum x + y if $2\sin x \cos y + \sin x + \cos y = -\frac{1}{2}$. - T-7. In the diagram, circle O has a radius of 10, circle P is internally tangent to O and has a radius of 4. \overline{QT} is tangent to circle P at T and, if drawn, line \overline{PT} intersects circle O at points A and B. Compute the product $TA \cdot TB$. - T-8. For t a real number, let $x(t) = at^3 bt$ and $y(t) = at^3 + bt^2$ be a system of parametric equations for a curve. If $a,b \in \{0,1,2,3,...,100\}$, compute the number of ordered pairs (a,b) such that the curve has exactly two distinct y-intercepts. - T-9. Given A(0,0) and B(x,y) with 0 < x < 1 and y > 0, let the slope of \overline{AB} equal r. Point C lies on the line x = 1 such that the slope of \overline{BC} equals s with 0 < s < r. The area of ΔABC can be written as $k_x(r-s)$ where the value of k_x depends on x. Compute the largest possible value for k_x . - T-10. The numbers 1, 2, 3, ..., 17, 18, 19 can be written down in a sequence that forms a 29-digit palindrome. Compute the number of distinct 29-digit palindromes that can be formed in this way. Write the answer without using factorial notation.