
New York City Team Contest: Solutions

Winter 2022

1. [6] Let r and s be the zeroes of f(x) = x2 − 7x+ 10. Compute | r+s
r−s |.

Solution: We can factor f(x) = (x − 5)(x − 2). So, the sum of the zeroes, r + s = 7. The positive
difference between the zeroes, |r − s| = 3. So, | r+s

r−s | =
7
3 .

2. [6] Let ABCD be a square with side length 1. Let E be the midpoint of side BC, and let F be the midpoint
of segment AE. Compute the area of △ADF .

Solution:

A B

CD

E

F

Note that the area of triangle △ADE is 1
21(1) =

1
2 since both the base and height of △ADE are 1.

Additionally, since F is a midpoint of AE, line DF splits △ADE into two triangles of equal area, △AFD
and △DFE, so the area of △AFD = 1

2

(
1
2

)
= 1

4

3. [7] Compute

(123 + 231− 321)
(
1(2

3) + 2(3
1) − 3(2

1)
)(

12

3
+

23

1
− 32

1

)

Solution: Note that the middle term can be computed as 1 + 8 − 9 = 0, implying that the final prod-
uct is 0 as well.

4. [7] Compute the least number of line segments needed to dissect a square into 8 regions, all of which are
triangles.

Solution: We claim that we need at least 4 segments.

3 lines can split the plane into at most 7 parts:



Then, there is no way that 3 segments can split the square into 8 parts, let alone triangles. We can construct
4 segments such that the condition is satisfied:

A B

CD

4 segments are needed and 4 segments are enough, so the answer is 4.

5. [8] Julius Randle is given the ball during the waning seconds of a New York Knicks basketball game. The
probability that he scores and wins the game is 1

10 . The probability that he turns the ball over and loses
the game is 1

10 . The probability that he misses the shot but doesn’t lose the game is 4
5 , repeating this in

overtime. This continues until either Julius hits the shot, or loses the game. What is the probability that
Julius hits the shot and wins the game for the Knicks?

Solution: Note that this system is symmetric, since the probability that Julius wins the Knicks the game
on any given stage is equal to the probability that he loses the game at that same stage. Since the game
can’t end in a tie, the probability is simply 1

2 .

6. [8] Let s(n) be the sum of the digits of n. Compute the sum of the 2 smallest positive integers n such that
n = 6 · s(n)− 1.

Solution: First, note that no 1 digit numbers work. Now, let n = 10a + b, where a and b are the dig-
its of the two-digit number n. The given equation rewrites as 10+ b = 6(a+ b)−1 =⇒ 4a+1 = 5b. Testing
values of b yields b = 1 =⇒ a = 1 and b = 5 =⇒ a = 6, giving the two smallest values of n to be 11 and
65, respectively. This gives a sum of 76 as desired.

7. [9] Jerry colors some set of unit lattice squares (squares of side length 1 with vertices on lattice points) purple
such that any two lattice squares can be connected by a path of purple squares that touch along an edge.
Given that the smallest rectangle that can be constructed with sides perpendicular to the axes containing
all of the colored squares has area 120, find the smallest number of squares Jerry could have colored.



Solution: We claim that if the smallest box containing a path of purple squares has dimensions A×B, there
are at least A + B − 1 purple squares. To show this, label the rows of the box 1 to A from bottom to top,
and label the columns of the box 1 to B from left to right. Because there is a square in row 1 and a square
in row A, we need at least A− 1 vertical steps in our path. Similarly, we need at least B− 1 horizontal steps
in our path. Thus, there are at least A + B − 2 steps in our path, which means that the path contains at
least A+B − 1 purple squares, as desired.

Let the dimensions of our bounding box be A×B. We know that AB = 120, and A,B are integers, so the
smallest possible value of A+B − 1 is 21. By the claim above, we need at least 21 purple squares. We note
that 21 is achievable if we create an L-shaped path that starts at any square, goes 11 steps right then 9 steps
up.

8. [9] Compute the number of ways to fill crates numbered 1 though 8 with purple pandas, teal terrapins, or
grey grapes, such that each crate has exactly one object, and any crate filled with grapes is labeled with an
odd number.

Solution: In each of the crates labelled 2, 4, 6, 8, we have exactly 2 options to place an object in them:
either a panda or a terrapin. In each of the crates labelled 1, 3, 5, 7, we can place any of the 3 objects into
each crate. Then the final answer is 24 · 34 = 16 · 81 = 1296.

9. [10] John is mashing buttons on his calculator. His first button is an integer between 1 and 9; his second
button is one of the symbols +,−,×,÷; his third is an integer between 1 and 9. What is the probability
that his button-mashed expression results in a positive integer?

Solution: Note that there are 9 · 4 · 9 = 324 total ways for John to create an expression. If the opera-
tion he chooses in the second slot is either + or ×, then all such pairs of integers chosen in the first and third
slots work, giving 9 · 9 = 81 in each case, for 162 so far.

If the operation that John chooses is subtraction, then we require that the first integer John chooses is larger
than the second; there are exactly

(
9
2

)
ways to choose 2 distinct integers from 1 to 9, and after choosing

these 2 integers, the larger one must appear first, so each choice of 2 integers results in exactly one valid
subtraction. Then there are

(
9
2

)
= 36 choices of the integers that are valid in this case.

Finally, if John chooses to divide the two integers, then we need the first to be a multiple of the second. We
now casework on what the second integer can be.
If it is 1, then any of the 9 integers can be the first one chosen. If it is 2, then we need to choose one
of the 4 even integers in the interval. If it is 3, then we need to choose one of the 3 multiples of 3. If it
is 4, then either 4 or 8, and if it is 5 or above, then the only valid integer to choose is itself. This gives
9 + 4 + 3 + 2 + 1 + 1 + 1 + 1 + 1 = 23 choices for the 2 integers in this case.

Then overall, there are 162 + 36 + 23 = 221 total expressions that result in a positive integer, and so the
probability is 221

324 .

10. [Up to 10] Submit two points A : (x1, y1), B : (x2, y2) such that 0 ≤ x1, x2, y1, y2 ≤ 5
√
2. Let L be the

length of your line segment AB, and let N be the number of intersections between your line segment and the
segments of other teams. If your segment contains or is entirely contained within another team’s segment,

you will receive 0 points. Otherwise, you will receive
L

N + 1
points.

11. [11] Let △ABC be a triangle with BC = 5 and hB = hC = 4, where hB and hC represent the heights from
B to side AC and C to side AB, respectively. Compute the area of △ABC.

Solution:



A

BC

E F

D

Let D,E, F be the feet of the altitudes from A,B,C to BC,CA,AB respectively.

The statement of the problem tells us that BE = CF = 4. Applying the Pythagorean Theorem on △CEB
and △CFB, we get that CE = FB = 3.

Note that △ACD and △BEC are similar since they both share angle ∠ACB and have a right angle.
Thus AD

DC = BE
EC = 4

3 .

However, since BE = CF , we can conclude that AC = AB since 1
2AC(BE) = [ABC] = 1

2AB(CF ).
Thus D is actually a midpoint of BC, so DC = 5

2 .
Substituting this into AD

DC = 4
3 we get AD = 10

3 , so the area of triangle ABC is 1
2

(
10
3

)
5 = 25

3 .

12. [11] Rishbah has a set of 13 cards, numbered 1 through 13. He chooses a hand of 7 cards. Given that there
are at least 5 consecutive numbers among the chosen cards, compute the number of hands Rishbah could
have chosen.

Solution: Call a set of k consecutive cards a k-straight. For any straight of exactly 5 cards, there are(
8
2

)
ways to choose the other 2 cards to form a set of 7 cards with a straight. There are 9 possible straights

(a straight can start with any card from 1 to 9). Thus there are 9 ·
(
8
2

)
= 252 sets that we’ve counted so far.

However, we’ve overcounted cases where our straight connects to one of the 2 cards we’ve chosen: 6-straights
and 7-straights. We’ve counted each set with a 6-straight twice, and each set with a 7-straight three times.
Note that if we casework on the straight of length at least 6, then we will subtract out sets with a straight
of length exactly 6 once, and we will subtract out sets with a straight of length 7 twice, which will leave us
counting each set once. Then for each straight of length 6, there are 7 options for the last card. There are
8 possible straights of length exactly 6, which means that we must subtract out 7 · 8 = 56 from our original
count. Then the total number of sets that satisfy that 5 cards are consecutive is 252− 56 = 196 as desired.

13. [12] Jerry is playing a game of pool on a very strange table. The table is an isosceles triangle; the two legs
form a 30◦ angle. Jerry hits a ball that is on one of the legs of the triangle. The ball bounces off of the other
leg before hitting the first wall halfway between its original position and the vertex of the triangle. Compute
the acute angle formed between the wall and the path of the ball at the starting point. (Note that the acute
angle formed between the ball’s path and the wall is the same before and after colliding with the wall.)

Solution: Let O denote the corner, J denote the point where Jerry is standing, P be the point where
the pool ball hits the wall, and Q be the midpoint of OJ . Let Q′ be the reflection of Q over the reflec-
tive wall. Then JPQ′ are collinear. We also have ∠POQ′ = ∠QOQ′ = 2∠QOP = 60. Also, we have
OQ′ = OQ = OP/2. This implies that OPQ′ is a 30-60-90 triangle, so ∠OPQ = ∠OPQ′ = 30.



J

Q

O

14. [12] A figure is constructed recursively. At time t = 0, an equilateral triangle of side length 1 is drawn.
Each minute after, an equilateral triangle of side length 1 is constructed on each side of an already existing
equilateral triangle of side length 1. For example, at time t = 2 minutes, there are 10 equilateral triangles of
side length 1 drawn. Compute the number of equilateral triangles of side length 1 drawn after 100 minutes.

Solution: Let △ABC be the first triangle, with B to the right of A and C below segment AB. Call a
triangle we draw nice if it is below line BC and above line AC. Let xn be the number of triangles after n
minutes. Let yn be the number of nice triangles after n minutes. By rotational symmetry about triangle
ABC, xn = 3yn + 1. It suffices to compute y100. Consider the set Sn of nice triangles after n minutes. We
see that if n is odd then Sn consists of (n+1)/2 down-right ”rows” of n triangles each, and if n is even then
it consists of n/2 up-right ”columns” of n+ 1 triangles each. In either case, yn = |Sn| = n(n+ 1)/2, giving
x100 = 1 + 3 · 100 · 101/2 = 15151.

15. [13] Let △ABC be a triangle with AB = 3, BC = 4, and ∠ABC = 90◦. Let P be a point on line BC, and
let Q be its projection onto line AC. If Q lies between A and C, and ∠APQ = 1

2∠ACB, compute AQ.

Solution:

A

B CP

Q

F

Let F be the intersection of PQ and AB.

Let x = ∠ACB, then ∠BAC = 90− x, ∠APQ = x
2 and ∠QAP = 90− x

2 .
Thus ∠BAP = ∠QAP − ∠BAC = (90− x

2 )− (90− x) = x
2 .

This tells us that △APF is isosceles, or that AF = FP . It also tells us that △ABP and △PQA are
congruent, so ∠APB = ∠PAQ, meaning that AC = CP = 5.

Since △AQP and △PBA are congruent, AQ = PB = PC −BC = 5− 4 = 1.

16. [13] Find the sum of all positive integers n such that n+ 4 divides 4n2 + 24n+ 46.

Solution: If n + 4 divides 4n2 + 24n + 46, 4n2+24n+46
n+4 must be an integer. Performing polynomial di-

vision, we get that 4n+ 8+ 14
n+4 must be an integer. 4n+ 8 is always an integer, so we want n+ 4 to divide

14. Since n > 0, n + 4 equals either 7 or 14, making n ∈ {3, 11}. Taking the sum of all possibilities gives
3 + 11 = 14.



17. [14] Let P (x) = x4 − 8x3 + 21x2 − 14x+ 6 have roots r, s, t, u. Compute (2 + r2)(2 + s2)(2 + t2)(2 + u2).

Solution: Note that since P (x) is monic, we can say that P (x) = (x− r)(x− s)(x− t)(x− u).
If we multiply each term of the product by −1, we preserve the final value of the product (since (−1)4 = 1).
Then we wish to compute (−2− r2)(−2− s2)(−2− t2)(−2− u2). Using difference of squares, we want

(
√
−2 + r)(

√
−2− r)(

√
−2 + s)(

√
−2− s)(

√
−2 + t)(

√
−2− t)(

√
−2 + u)(

√
−2− u)

Focus on (
√
−2− r)(

√
−2− s)(

√
−2− t)(

√
−2−u). This is simply P (

√
−2) = −32+2

√
−2. For the product

(
√
−2+r)(

√
−2+s)(

√
−2+ t)(

√
−2+u), again note that we can negate each term in the product, so we wish

to compute (−
√
−2− r)(−

√
−2− s)(−

√
−2− t)(−

√
−2−u) = P (−

√
−2) = −32− 2

√
−2. Then our original

product can be expressed as P (
√
−2) · P (−

√
−2) = (−32 + 2

√
−2)(−32 − 2

√
−2) = (−32)2 − (2

√
−2)2 =

1024− (−8) = 1032, and we are done.

18. [14] Compute (14!)2 mod 31.

Solution: We rewrite the expression as

(1·2·3 · · ··14)(1·2·3 · · ··14) ≡ (1·2·3 · · ··14)(−1·−2·−3 · · ··−14)(−1)14 ≡ (1·2·3 · · ··14)(30·29·28 · · ··17) mod 31

Let this equal k mod 31. Now using Wilson’s theorem, we know that 30! = 30 mod 31. Then

15 · 16 · k ≡ (1 · 2 · 3 · · · · 14)(30 · 29 · 28 · · · · 17) · 16 · 15 ≡ 30 mod 31

=⇒ 15 · 16 · k = 30 mod 31

Dividing by 15 on both sides yields 16k ≡ 2 ≡ 64 mod 31, implying k = 4 as desired.

19. [15] How many lattice paths from (0, 0) to (6, 6) do not touch the lines y = x− π or y = x+ π?

Solution: Note that there does not exist a path that intersects both of these lines, since the region of
points below the first line and in the square with vertices (0, 0), (0, 6), (6, 6), (6, 0) have x ≥ π, and the region
of points below the first line and in the same square have x ≤ 6−π, and no value of x satisfies both of these.
Thus it suffices to compute the total number of paths that intersect the line y = x+ π, and subtract twice
this value from the total number of paths.

To count the number of paths that cross through this line, we make use of an argument analogous to that of
the Catalan numbers. Given a path that crosses the line for the first time at (a, a + π), consider swapping
each move after reaching the point (a, a+ 4). Since the number of up moves and the number of right moves
to get to (a, a + 4) differ by 4, then the number of right moves and the number of up moves to get from
(a, a+ 4) to (6, 6) also differ by 4. Swapping these gives that at the end, our new path will have a number
of up moves that is 8 greater than the number of right moves, and it will have 12 total moves, implying that
the new path will end up at the point (2, 10). Reversing this argument (by considering paths that go to
(2, 10) and swapping moves after they first intersect the line y = x+ π) shows that this is a bijection, so the
number of paths that cross through the line y = x+ π is exactly equal to the number of paths to (2, 10), of
which there are

(
12
2

)
= 66.

Finally, there are
(
12
6

)
= 924 total paths, and we subtract out 2 · 66 = 132 bad paths to get 792 paths that

don’t cross either line.

20. [Up to 28] Welcome to USAYNO!

Instructions: Submit a string of 6 letters corresponding to each statement: put T if you think the statement
is true, F if you think it is false, and X if you do not wish to answer. You will receive (n+1)(n+2)

2 points for
n correct answers, but you will receive zero points if any of the questions you choose to answer are incorrect.
Note that this means if you submit “XXXXXX” you will get one point.

(1) For all functions f : R → R and g : R → R, if there exists integers m and n such that
fm(x) = x and gn(x) = x, then there exists an integer k such that (f ◦ g)k(x) = x.



Solution: We can find a construction such that f2(x) = x and g2(x) = x (m = n = 2), but there is
no such k for which (f ◦ g)k(x) = x:

f(x) =


x+ 1 if x ∈ {2n+ 1 : n ∈ Z}
x− 1 if x ∈ {2n : n ∈ Z}
x if x /∈ Z

(1)

and

g(x) =


x− 1 if x ∈ {2n+ 1 : n ∈ Z}
x+ 1 if x ∈ {2n : n ∈ Z}
x if x /∈ Z

(2)

Then f2(x) = x and g2(x) = x, but

(f ◦ g)(x) =


x− 2 if x ∈ {2n+ 1 : n ∈ Z}
x+ 2 if x ∈ {2n : n ∈ Z}
x if x /∈ Z

(3)

If x is an odd integer, (f ◦g)(x) increases it by 2. If we do this many times, it keeps increasing, so (f ◦g)k(x)
cannot possibly be x for any k, and so we have a valid counterexample. The statement is False.

(2) The sum of any finite arithmetic sequence of positive integers with at least three terms is
composite.

Solution: Let the arithmetic sequence have length d. If d = 2k ≥ 4 is even, then each pair of oppo-
site terms sums to a fixed number n, so the total sum is equal to 2kn

d = kn, where both k and n are at least
2, so this always yields a composite sum.

If d = 2k − 1 ≥ is odd, then each pair of opposite terms (excluding the middle term!) sums to twice the
middle term. Let the middle term be n. Then the total sum is (k − 1)(2n) + n = (2k − 1)(n), where again
both factors are at least 2. This also gives a composite sum, so in all cases, the sum is composite.

(3) There are multiple functions f : R → R such that f(x+ 2y) = f(x) + f(y).

Solution: Firstly, plugging in x = y = 0 yields f(0) = 2f(0) =⇒ f(0) = 0. Now, Let x + 2y = 0,
i.e. x = −2y. Then 0 = f(0) = f(x)+f(y) = f(y)+f(x) = f(y+2x) = f(y+(−2y)) = f(−y). Then for all
y, f(−y) = 0, implying f(a) = 0 for all a ∈ R. Then there is only one function that satisfies this property:
the zero function, so the statement is false.

(4) Every triangle with inradius 1 and integer side lengths also has a right angle.

Solution: The claim is that the only triangle with inradius 1 and integer side lengths is a 3-4-5 trian-
gle, which has a right angle. Let a, b, c be the triangle’s side lengths, and let s = a+b+c

2 be the triangle’s
semiperimeter. Let x = s− a, y = s− b, z = s− c. If s is odd, then x, y, z must all be half of odd integers,
while if s is even, then x, y, z are all integers. By Heron’s, we must have:

√
xyz(x+ y + z) = sr = x+ y + z =⇒ xyz = x+ y + z.

At this point we can see that x, y, z must all be integers, because if they are all half integers then xyz would
have an 8 in the denominator while x + y + z would have a 2 in the denominator. We can assume WLOG
that x ≥ y ≥ z. If z ≥ 2, then xyz ≥ 4x > x+x+x ≥ x+ y+ z. Thus, we must have that z = 1. This gives
us

xy = x+ y + 1 =⇒ (x− 1)(y − 1) = 2.



This forces x = 3, y = 2, z = 1, which gives a = 3, b = 4 c = 5, as desired.

(5) Let f(a) be a function that returns the sum of all integers b between 1 and a inclusive
such that the gcd of a and b is 1. Then there exist positive integers m and n such that
f(m)f(n) = f(mn).

Solution: The claim is that f(a) = aφ(a)
2 . We can see this by noting that if b is relatively prime to a,

then so is a− b. Thus if we look at 2f(a) we get

2f(a) =
∑
b

b+
∑
b

(a− b)

=
∑
b

a

where the sums run over all b from 1 to a inclusive such that a and b have a GCD of 1.
However, looking at

∑
b

a, we can see that this should be equal to ax, where x is the number of possible

values of b. Recalling that φ(a) counts the number of b that are relatively prime to a and at most a, we can
see that x = φ(a), so

2f(a) = aφ(a)

f(a) =
aφ(a)

2

Now, we want to determine if there exist positive integers m,n such that

mφ(m)

2

nφ(n)

2
=

mnφ(mn)

2

This rewrites to finding positive integers m,n such that

φ(m)φ(n) = 2φ(mn)

However φ(mn) is at least as big as φ(m)φ(n). This is because any integers 1 ≤ c ≤ m and 1 ≤ d ≤ n such
that c and m have a GCD of 1 and d and n have a GCD of 1 corresponds to at least one integer 1 ≤ e ≤ mn
such that e and mn have a GCD of 1. Similarly every integer 1 ≤ e ≤ mn such that e and mn have a GCD
of 1 corresponds to exactly one c ≡ e mod m and d ≡ e mod n.

Thus, φ(mn) ≥ φ(m)φ(n) so 2φ(mn) > φ(m)φ(n) so there cannot be integers satisfying the desired equality.

(6) For all positive integers n, and all odd prime factors p of n8 + 1, we have 16|p− 1.

Solution: We claim that this is true. Assume for contradiction that p − 1 is not divisible by 16, and
let g = gcd(p − 1, 16). We know that g must be a factor of 8. Clearly, p does not divide n, so by Fermat’s
Little Theorem we have np−1 − 1 is divisible by p. We also know that p divides n16 − 1 = (n8 + 1)(n8 − 1).
Thus, we have p| gcd(np−1 − 1, n16 − 1) = ng − 1. Because g divides 8, ng − 1 divides n8 − 1, so we have that
p|n8 − 1. This means that p|(n8 + 1) − (n8 − 1) = 2, which means p = 2. This contradicts the assumption
that p is an odd prime. Thus, we must have that 16|p− 1.

21. [16] A single strip of paper has the numbers 1, 2, . . . , 10 written on it in that order. Every minute, Max
makes a cut between some two integers on a strip of paper that contains at least two of the ten integers. He
then moves any piece with exactly one integer cut during that minute to the leftmost side, maintaining the
order they followed after cutting. He stops once every piece has one integer on it. Find the total number of
ways Max can cut the strips so that 8 is the first integer from the left when he stops.

Solution: We claim that it is necessary and sufficient to make the cut between the 8 and 9 last. Note
that there will be 9 cuts made in total: the cut between the numbers 1 and 2, the cut between the numbers
2 and 3, and so on until the cut between 9 and 10. If the cut between the 8 and 9 is performed last, then



all other cuts have been performed, so each number is already on an individual piece of paper and has been
moved to the left. Then the cut between the 8 and 9 translates these to the start, and so the 8 is the start
of the string, so the 8 − 9 cut being last is sufficient. In a similar manner, if the 8 − 9 cut were NOT last,
then some other cut is last: say this is the cut between the numbers k and k+1. Since this is the last of the
9 cuts, all other numbers are already on individual strips of paper and have already been moved to the left.
Then the cut between k and k + 1 translates both k and k + 1 to the left, so the final string will start with
k ̸= 8. Thus it is also necessary for the final cut to be between 8 and 9, so we must count the total number
of ways to make 9 cuts such that this cut is last. This is simply 8! = 40320, since the other 8 cuts can be
made in any order, making the answer 40320.

22. [16] Let S = a1, a2, a3, . . . be an infinite increasing sequence of positive integers. We have that any element
ai of the sequence is divisible by either 1071 or 1072, but it is not divisible by 107. Let kS be the maximum
possible value of ai+1 − ai among all i. Compute the smallest possible value of kS , over all possible S.

Solution: Note that it suffices to look at the increasing sequence a1, a2, a3, . . ., where each ai is as small
as possible. We claim that the answer is 2 · 1071 = 2042. To see that this is a lower bound, consider what
happens near N = 1071 ·1072 ·107. The largest ai in this sequence that is less than N is 1071 ·(1072 ·107−1),
and the smallest ai in this sequence that is larger than N is 1071 · (1072 · 107 + 1). These have difference
1071 · 2 as desired. To see that this is an upper bound, we can focus solely on the multiples of 1071 that
appear in this sequence. Consider any 3 multiples of 1071; at most one of them is a multiple of 107. Then
if these are 1071k, 1071(k+1), and 1071(k+2), then the maximum possible difference between two of these
is 1071 · 2 = 2142. Since 2142 is both at least and at most kS in this case, 2142 is the answer.

23. [17] Let △ABC be a triangle with AB = 4, BC = 6, CA = 5. Let D be the intersection of the B-angle
bisector and the line through A parallel to BC. Let E be the intersection of the C-angle bisector and the
line through B parallel to AC. Let F be the intersection of the A-angle bisector and the line through C
parallel to BA. Compute the area of (non convex) hexagon AEBFCD.

Solution: Note that ∠ABD = ∠DBC = ∠ADB by the line DB being an angle bisector, and AD be-
ing parallel to BC. Then △ADC is isosceles, so AD = 4. Similarly, BE = 6 and CF = 5. Now, we compute
the ratio of the area of AEBFCD to the area of △ABC. We split AEBFCD into △ADC,△BEA,△CFB,
and △ABC. Note that △ADC and △ABC have the same height (from A to BC and C to AD), so the
ratio of their areas is simply the ratio of AD to BC, which is 4

6 . Similarly, the ratio of the areas of △BEA
to △ABC is 6

5 , and the ratio of the areas of △CBF to △ABC is 5
4 . Thus the total area of the hexagon is

(1 + 4
6 + 6

5 + 5
4 = 247

60 times that of △ABC. Using Heron’s formula, we can compute the area of △ABC to

be 15
√
7

4 , and so the final answer is 247
60 · 15

√
7

4 = 247
√
7

16 .

A

BC

E

F

D

24. [17] Mr. Cocoros and Rishabh are taking a tour of the fourth floor, which has 8 rooms, including rooms 403
and 407. In order to avoid being supsicious, Mr. Cocoros won’t take Rishabh to the same room twice on the
tour. How many ways are there for Mr. Cocoros to take Rishabh on a tour of the fourth floor that starts in
room 403 ends in room 407 without being suspicious?



Solution: Let the other 6 rooms be A,B,C,D,E, F . Since we don’t want to visit any room twice, we
want to find the number of permutations of some number of these rooms; the entire trip will start from 403,
go through the permutation of the rooms (in order), and go from the last room in the permutation to 407.
We can count this by casework on the number of rooms.

For 6 ≥ n ≥ 1, consider a permutation of n of the rooms. There will be 6 options for the first room, 5 options
for the second (unless n = 1), and in general there will be 7− k options for the k-th room in the sequence.
Then there will be

∏n
i=1(7 − i) total permutations of length n. Summing this for all n from 1 to 6, we get

6+(6)(5)+(6)(5)(4)+(6)(5)(4)(3)+(6)(5)(4)(3)(2)+(6)(5)(4)(3)(2)(1) = 6+30+120+360+720+720 = 1956.
Adding in the empty permutation (i.e. the tour that goes directly from room 403 to 407), we get 1957 total
paths as desired.

25. [18] Call a function f : Z → {0, 1, 2, 3, 4} 1-multiplicative if for every a,

• f(a+ 5) = f(a)

• There exists at least one value b ̸≡ a mod 5 for which f(ab) ≡ f(a) · f(b) mod 5.

Find the number of 1-multiplicative functions.

Solution: Note that the first condition makes it sufficient to assign values to f(0), f(1), f(2), f(3), f(4).
We will also say a pairs with b if a and b satisfy the second condition.

Let us first consider f(0) ≡ f(0) · f(b) mod 5, for b ̸≡ 0 mod 5. Because each value k, 2k, 3k, 4k, 5k
will be distinct mod 5 for k ̸≡ 0 mod 5, this can only be true when either f(0) = 0 or f(b) = 1 is true. When
f(0) = 0, this holds for all b ∈ {1, 2, 3, 4}, meaning every value will have a pairing and we can assign any
of the five values to f(1), f(2), f(3), f(4), totaling 54 = 625 ways. In all other cases, f(0) ̸= 0 and we must
have some value b ̸≡ 0 mod 5 for which f(b) = 1.

Now let us consider f(b) = f(1) · f(b), b ̸≡ 1 mod 5. This implies f(1) = 1 or f(b) = 0. Similarly, if
f(1) = 1, this will pair with all b ̸≡ 1 mod 5, totaling 4 · 53 = 500 ways. Otherwise, we need some f(b) = 0,
where b ̸≡ 0, 1 mod 5.

These conditions give us that among f(2), f(3), f(4), we need some value equivalent to 0 (pairing with
1) and another equivalent to 1 (pairing with 0). We can notice that if all three values are either 0 or 1 (where
there is at least one of each), this function will satisfy, totaling 4 · 4 · 6 = 96 ways.

Otherwise, the only way we can achieve a value not equal to 0 or 1 among f(2), f(3), f(4) is if some pairing
of values a, b ∈ {2, 3, 4} satisfies ab ≡ 1 mod 5. This is only true for 2 · 3 ≡ 1 mod 5, which gives us four
assignments:

f(2) = f(1) = 0 =⇒ f(3) ∈ {2, 3, 4} =⇒ 3 · 4 = 12 ways

f(2) = 1 =⇒ f(3) = f(1) ∈ {2, 3, 4} =⇒ 3 · 4 = 12 ways

f(3) = f(1) = 0 =⇒ f(2) ∈ {2, 3, 4} =⇒ 3 · 4 = 12 ways

f(3) = 1 =⇒ f(2) = f(1) ∈ {2, 3, 4} =⇒ 3 · 4 = 12 ways

The total number of functions is then 625 + 500 + 96 + 48 = 1269.

26. [18] Compute
50∑
n=1

(n2 + 1) · n!

50!



Solution: Note that

(n− 1) · n! + (n2 + 1) · n! = (n2 + n) · n! = n · (n+ 1)! = ((n+ 1)− 1) · (n+ 1)!

Thus, by adding (1 − 1 · 1!) (which is equal to 0) to the numerator of the expression we want to compute,
we get

50∑
n=1

(n2 + 1) · n! = (1− 1) · 1! +
50∑
n=1

(n2 + 1) · n!

= (2− 1) · 2! +
50∑
n=2

(n2 + 1) · n!

= (3− 1) · 3! +
50∑
n=3

(n2 + 1) · n!

...

= (50− 1) · 50! +
50∑

n=50

(n2 + 1) · n!

= (51− 1) · 51!

The final answer is then 50·51!
50! = 50 · 51 = 2550

27. [19] Call a number alternating if each digit is either greater than or less than all of its adjacent digits and
no two digits are equal. For example, 19283 and 91827 are alternating. Compute the largest alternating
multiple of 11.

Solution: First, let’s think recall the divisibility rule of 11: The sum of the digits in the odd places
and the sum of the digits in the even places differ by a multiple of 11. Let n equal the largest alternating
multiple of 11. Let x equal the sum of the even digits of n. In order for n to be maximal, it should have 10
digits. So, the total sum of the digits would be 0 + 1 + 2 + ...+ 9 = 45. So, x− (45− x) must be a multiple
of 11. So, 2x ≡ 45 mod 11, and x ≡ 6 mod 11. Since x is the sum of five distinct non-negative integers at
most nine, x must be between 10 and 35. Combining our conditions, x is either 17 or 28.

We can then consider the first digit of our number.

Claim the first: The first digit cannot be 9.
If the first digit is 9, the second digit must be smaller. So, the odd place digits are all larger than their
neighboring even place digits. So, 8 must be in an odd place, as there is only one number larger than it,
and 8 is not in the first slot. Then, the sum of the odd places must be 28, as it is already 17. The last 3
odd place numbers must then sum to 11. Since 3 + 4+ 5 > 11, there must be an odd digit at most 2. There
also cannot be an odd place digit less than 2, as each odd place digit must have two smaller neighbors. So,
2 must be an odd place digit. Now, 3 cannot be a odd-place digit, as there are not two smaller digits that
can be placed on either side of it (the 1 and 0 must go around the 2). So, the odd place digits must be 9, 8,
5, 4, 2 and the even place digits must be 7, 6, 3, 1, 0. The 7 and the 6 must both go between the 9 and the
8, as all of the other odd digits are smaller, a contradiction.

So, in order to maximize our number, we would like our first digit to be 8. From the case above, we can see
that the digits 9 and 8 cannot both be in the same group of digits (even or odd places). So, the even digits
must be the larger digits, and the odds the smaller. Our odd place digits thus sum to 17 and the even place
digits to 28. Moreover, the second digit must be 9, as it is the only digit greater than 8. Continuing along,
7 must be an even place digit. The three remaining even place digits then sum to 12. We would like the
fourth digit to be 6 to maximize the number, making the remaining even place digits 5, 4, and 3, giving the
remaining odd place digits as 2, 1, and 0. So, our final number is 8967251403.



28. [19] Let ABCDEF be a regular hexagon of side length 3. X,Y, Z are three points chosen arbitrarily on
three different sides of ABCDEF . Compute the area of the locus of the centroid of △XY Z.

Solution: Let’s consider if X,Y, Z are on three consecutive sides (for instance, AB,BC,CD).

Let’s fix Y and Z at B and C, respectively, and consider shifting X along segment AB from A to B. Since

the centroid of △XY Z for X = x, Y = y, Z = z can be thought of as
x+ y + z

3
, we can notice that a shift

of X along a segment of length 3 will result in a parallel shift of the centroid along a segment of length 1.

A

B C

D

EF

Similarly, shifting Y along BC will result in a parallel shift of length 1 along each of the points along our
previous line segment, resulting in a rhombus with side length 1 and two 60◦ angles:

A

B C

D

EF

Then shifting the entire figure along a segment of length 1 parallel to CD results in a hexagon of side length
1:



A

B C

D

EF

We can argue similarly that when X,Y, Z are on three non-adjacent sides (for instance, AB, CD, EF ), the
locus of the centroid is a hexagon of side length 1 that shares the center of ABCDEF :

A

B C

D

EF

And in the case of having two points along opposite sides (for instance, X ∈ BC, Y ∈ EF , Z ∈ AB), we
have a parallelogram with side lengths 1 and 2, and two 60◦ angles:

A

B C

D

EF

Rotating for each possible set of sides, we get the following region:



A

B C

D

EF

Note that our third case is entirely contained within the first two. Our area is then equal to the area of

seven regular hexagons of side length 1, which is 7 · 3
√
3

2
=

21
√
3

2
.

29. [20] How many positive integers n between 10 and 100, inclusive, satisfy

n | (n− 1)!

(
1 +

1

2
+

1

3
+ . . .+

1

n− 1

)
?

Solution: If n is odd, we have

(n− 1)!

(
1 +

1

2
+

1

3
+ . . .+

1

n− 1

)
=

(n− 1)!

((
1 +

1

n− 1

)
+

(
1

2
+

1

n− 2

)
+ . . .+

(
1

(n− 1)/2
+

1

(n+ 1)/2

))
=

(n− 1)!

(
n

1(n− 1)
+

n

2(n− 2)
+ . . .+

n

(n− 1)/2 · (n+ 1)/2

)
,

which is divisible by n because all terms in the sum are divisible by n. Thus, all odd numbers 45 total
between 10 and 100 satisfy the condition. In the case where n is even, we can do a similar pairing of terms
whose sum is divisible by n, but we are left with the term (n − 1)! 1

n/2 . Let k = n/2. Then the condition

becomes 2k| (2k−1)!
k , or 2k2|(2k − 1)!. For k ≥ 5, it is clear that (2k − 1)! has a higher power of 2 than 2k2,

so we only need to see when k2|(2k − 1)!. Let p be any prime dividing k, and let l be the largest power
of p dividing k. The largest power of p dividing k2 is 2l, while the largest power of p dividing (2k − 1)! is
at least ⌊2k−1

p ⌋. If l > 1, then ⌊2k−1
p ⌋ ≥ k

p > pl ≥ 2l. If l = 1, but k ̸= p, then ⌊2k−1
p ⌋ ≥ k

p ≥ 2 = 2l.

Thus, if k isn’t prime, n = 2k satisfies the condition. If k is a prime, it is clear that 2k2 doesn’t divide
(2k−1)!. Thus, the only numbers between 10 and 100 that don’t satisfy the conditions are those of the form
2p, where p is prime. There are 13 numbers of this form: 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94. This
gives 91− 13 = 78 numbers between 10 and 100 that satisfy the condition.

30. [20] Consider triangle XY Z with side lengths 13, 14, 15. Let MX , MY , MZ be the midpoints of arcs Y Z,
ZX and XY in the circumcircle of XY Z. Compute the area of the hexagon formed by intersecting triangles
XY Z and MXMY MZ .

Solution: Let I be the incenter of XY Z, and let the hexagon in question be ABCDEF .



X

YZ

MX

MY

MZ

AB

C

D
E

F
I

This problem can be split into 3 main claims.

Claim The First: XDIE, Y FIA, and ZBIC are all rhombii.
Note that MY MZ is the perpendicular bisector of XI (since MZX = MZI and MY X = MY I), and that XI
is an angle bisector of angle ∠DXE. Thus XDIE is a rhombus.
Symmetric arguments prove the remaining parts of the claim.

X

YZ

MX

MY

MZ

AB

C

D
E

F
I

Claim The Second: AD, BE, and CF concur at I, and AD ∥ XY , BE ∥ ZX, CF ∥ Y Z.
Using Claim The First, AI ∥ XY ∥ ID, so the line AD passes through I, and AD ∥ XY .
Symmetric arguements prove the remaining parts of the claim.

Claim The Third: △IAB ∼ △ICD ∼ △IEF ∼ △XY Z.

This follows directly from Claim The Second.

Now we will compute the answer. Note that the ratio of similarity between △IAB and △XY Z is r
hx
,

where r is the inradius and hX is the height from X to Y Z.

This ratio is equivalent to
[XY Z]

s
2[XY Z]

Y Z

= Y Z
XY+Y Z+ZX , where s is the semiperimeter of △XY Z.

We can compute the ratios of similarity for triangles △ICD and △IEF similarly.

Now we have that the combined areas of △IAB,△ICD,△IEF is equal to [XY Z]XY 2+Y Z2+ZX2

(XY+Y Z+ZX)2
.



The remaining areas left to compute of hexagon ABCDEF are the areas of triangles △IBC,△IDE,△IFA.
These areas are half the areas of rhombii XDIE, Y FIA,ZBIC.

We can now conclude that the area of hexagon ABCDEF is

[XDIE] + [Y FIA] + [ZBIC]

2
+ [IAB] + [ICD] + [IEF ]

or
[XDIE] + [Y FIA] + [ZBIC] + 2[IAB] + 2[ICD] + 2[IEF ]

2

which is equivalent to1
2([XY Z] + [IAB] + [ICD] + [IEF ])

We can simplify this to 1
2 [XY Z](1 + XY 2+Y Z2+ZX2

(XY+Y Z+ZX)2
) = 1

2(84)(1 +
132+142+152

(13+14+15)2
= 1177

21


