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1 Chinese Remainder Theorem
You may have seen problems where you have some number of things and you try to divide them into groups of

three but there are some number left over, and then into groups of four but there are some number left over,

and then into groups of five but there are some number left over, and you’re asked to find such a number.

The Chinese Remainder Theorem is not a particularly useful theorem for computing mods themselves but

it is important in solving such problems and is surprisingly powerful.

Theorem

Suppose x1, x2, x3, ..., xn are some pairwise relatively prime integers, and a1, a2, ..., an are some integers

with 0 ≤ ai < xi.

Then the system of congruences

m ≡ a1 (mod x1)

m ≡ a2 (mod x2)

. . .

m ≡ an (mod xn)

Has exactly one integer solution m, where 0 ≤ m < x1x2 · · ·xn.

Proof

There are two parts to the proof. Firstly, we will show there is at most one integer in this range satisfying

these congruences. Suppose there are two integers in this range, m1 and m2, satisfying the conditions.

Then ai | (m1 −m2) for all i between 1 and 12, so then since the ai’s are pairwise relatively coprime,

a1a2a3 · · · an | (m1 −m2). But given that |m1 −m2| is at most a1a2a3 · · · an − 1, then m1 −m2 = 0.

Thus, we are done.

Now, we will show how to construct an integer, without guesswork, satisfying these conditions. Firstly,

consider the first two congruences. Suppose b1 is the inverse of x1 (mod x2), and suppose that b2 is the

inverse of x2 (mod x1). Then consider the integer a1b2x2 + a2b1x1.

a1b2x2 ≡ 0 (mod x2), and a1b2x2 ≡ a1 · 1 ≡ a1 (mod x1). Also, a2b1x1 ≡ a2 · 1 ≡ a2 (mod x2), while

a2b1x1 ≡ 0 (mod x1). Thus, the sum of these two terms is congruent to a1 (mod x1) and a2 (mod x2),

as desired.

Thus, we now have that there exists a unique integer c, 0 ≤ c < x1x2, such that m ≡ c (mod x1x2). Now,

we can apply the same process again with our congruences (mod x1x2) and (mod x3), finding a unique

integer which works (mod x1x2x3), and so on until we get an integer which works (mod x1x2 · · ·xn).
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2 Fermat’s Little Theorem and Euler’s Theorem

Theorem (Fermat’s Little Theorem)

Suppose p is a prime. Then for all integers a, we have that ap ≡ a (mod p).

Proof

If a ≡ 0 (mod p), then we know ap ≡ 0p ≡ 0 ≡ a (mod p).

If a 6≡ 0 (mod p), then a and p are relatively prime. Thus, from last week, we know that the sets of

integers {1, 2, 3, 4, . . . , p− 1} and {a, 2a, 3a, . . . , (p− 1)a} are the same.

Therefore, since the sets have the same elements but permuted (mod p), the products of all of their

elements are congruent (mod p). Thus, we have

(p− 1)! ≡ ap−1 · (p− 1)! (mod p)

Which can be rearranged as

(p− 1)! · (ap−1 − 1) ≡ 0 (mod p)

But (p − 1)! is not divisible by p, so from Euclid’s Lemma, we have that ap−1 − 1 ≡ 0 (mod p). This

means that ap − a ≡ 0 (mod p), as desired. We are done in either case.

However, note that the same argument does not apply to composite integers. What part of our proof would

fail there?

Fortunately, there is a theorem which gives a similar result for composite integers (and is a generalization of

FLT).

Definition (The Phi Function)

Given a positive integer n, ϕ(n) is defined as the number of positive integers less than or equal to n

which are also relatively prime to n.

Theorem (Euler’s Theorem)

Suppose n is a positive integer, and a is an integer coprime to n. Then aϕ(n) ≡ 1 (mod n).

Proof

Suppose x1, x2, x3, .., xϕ(n) are the ϕ(n) integers less than or equal to n coprime to n. Since a is relatively

prime to n, the numbers ax1, ax2, ax3, . . . , axϕ(n) are all distinct modulo n. Moreover, they are all

coprime to n. Thus, these two lists of ϕ(n) integers are again simply permutations of each other.

Multiplying and subtracting, we find that x1 · x2 · · · · xϕ(n) · (aϕ(n) − 1) ≡ 0 (mod n). But the product

of the xi’s is coprime to n, so by the Fundamental Lemma, we are done.

This is a good theorem to have, but how can we compute ϕ(n)? There are three steps to deriving our

formula.
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Lemma 1

Suppose a, d are coprime. Then for any integer b, a + db is coprime to b.

Proof

Suppose that a + db and b have a common factor c. Then db has this factor c. Then (a + db) − db = a

has this factor c. This is a contradiction unless c = 1.

Lemma 2

If p is prime and k is positive, ϕ(pk) = pk − pk−1 = (1− 1
p )pk.

Proof

We will count the opposite; how many numbers less than or equal to pk are not coprime to pk. For a

number to be not relatively prime to pk, they must share a common prime factor, which must be p.

Thus, there are pk

p = pk−1 numbers less than or equal to pk not relatively prime to pk, so there are

pk − pk−1 which are.

Lemma 3

For relatively prime positive integers a and b, ϕ(a)ϕ(b) = ϕ(ab).

Proof

Firstly, if an integer is relatively prime to ab, it must be relatively prime to a and b. The converse also

holds; if there is some d which divides ab, but is coprime to a and b, this contradicts the Fundamental

Lemma.

Now we count the number of positive integers less than or equal to a coprime to a, which is ϕ(a), and

the number of positive integers less than or equal to b coprime to b, which is ϕ(b).

For each of these ϕ(a) choices of a value modulo a and ϕ(b) choices of a value modulo b, we find that

there is one number between 1 and ab satisfying both of these congruences, and from Lemma 1 and

the first paragraph of this proof, we find this number is coprime to ab. Furthermore, if we have a value

modulo a or modulo b not coprime to a or b, respectively, the solution to these congruences is not

coprime to either a or b, respectively, and is thus not coprime to ab.

What all of this tells us is that if n = pe11 pe22 · · · p
ek
k , then ϕ(n) = ϕ(pe11 )ϕ(pe22 ) · · ·ϕ(pekk ) = pe11 (1− 1

p1
)pe22 (1−

1
p2

) · · · pekk (1− 1
pk

).

=⇒ ϕ(n) = n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pk

)
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3 Problems

3.1 Wilson’s Theorem
1. Wilson’s Theorem says that for all primes p, we have that (p− 1)! + 1 ≡ 0 (mod p).

(a) Show that the case for 2 holds, and henceforth assume p is odd.

(b) Show that 1 and p − 1 are the only integers between 1 and p − 1, inclusive, whose inverses are

themselves.

(c) Show that if b is the inverse of a (mod p), then a is the inverse of b (mod p).

(d) Using the previous two parts, show that the product of all integers between 2 and p−3 is congruent

to 1 (mod p). Following this, multiply in 1 and p− 1 to finish the problem.

3.2 Squares congruent to −1
1. Suppose that p ≡ 1 (mod 4). Then, using Wilson’s Theorem as well as the properties of mods, prove

that (p−1
2 !)2 ≡ −1 (mod p). (Hint: expand (p−1)!, and then manipulate your expression). This shows

that if p ≡ 1 (mod 4), then there exists c such that c2 ≡ −1 (mod p).

2. Suppose that p ≡ 3 (mod 4). Then, using Fermat’s Little Theorem as well as the properties as mods,

show that there is no x for which x2 + 1 ≡ 0 (mod p).

3. Can you extend this to showing that p never divides x2 + y2, save for when x and y are both multiples

of p? (Hint: fractional mods)

3.3 Miscellaneous
1. Suppose I have n < 60 oranges. When I try to put them in baskets with 3 oranges each, I have 2 left

over. When I try to put them in baskets with 4 each, I have 1 left over. When I try to put them in

baskets with 5 oranges each, I have 3 left over. How many oranges do I have?

2. k = 20082 + 22008. What is the units digit of k2 + 2k?

3. Find 220 + 330 + 440 + 550 + 660 mod 7.

4. Compute the remainder when 2100 is divided by 1000.

5. Show that there exists a sequence of 2020 consecutive composite integers.

6. Last year Isabella took 7 math tests and received 7 different scores, each an integer between 91 and

100, inclusive. After each test she noticed that the average of her test scores was an integer. Her score

on the seventh test was 95. What was her score on the sixth test?

7. For a positive integer p, define the positive integer n to be p-safe if n differs in absolute value by more

than 2 from all multiples of p. For example, the set of 10-safe numbers is {3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, . . .}.
Find the number of positive integers less than or equal to 10, 000 which are simultaneously 7-safe, 11-

safe, and 13-safe.

8. One of Euler’s conjectures was disproved in the 1960s by three American mathematicians when they

showed there was a positive integer such that 1335 + 1105 + 845 + 275 = n5. Find the value of n.
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