v_{p} and LTE

Mario Tutuncu-Macias

December 2020

1 Problems

1. Let n be the least positive integer for which $149^{n}-2^{n}$ is divisible by $3^{3} \cdot 5^{5} \cdot 7^{7}$. Find the number of positive integer divisors of n.
2. Find the smallest n such that 2013^{n} ends in 001 (PUMAC 2013 2)
3. For a given k, find all n such that 5^{k} divides $2^{n}-1$
4. $a^{a-1}-1$ is never squarefree for $a>2$
5. Let $p_{1}=2012$ and $p_{n}=2012^{p_{n-1}}$ for $n>1$. Find the largest integer k such that $p_{2012}-p_{2011}$ is divisible by 2011^{k}. (PUMAC 20126)
6. (ISL 1991) Find the largest k such that $1991^{k} \mid 1990^{1991^{1992}}+1992^{1991^{1990}}$
7. Show that if n is square free and if x, y are relatively prime, $\frac{x^{n}+y^{n}}{(x+y)^{3}}$ is never an integer
8. Let $a, b>1$ be positive integers and suppose $\left(a^{n}-1\right)\left(b^{n}-1\right)$ is a square for all positive integers n. If p is prime then the order of $a \bmod p$ is the same as the order of $b \bmod p$.
The order of $a \bmod p$ is the smallest k such that $a^{k} \equiv 1 \bmod p$
9. Determine all n such that $\frac{2^{n}+1}{n^{2}}$ is an integer (IMO 19903) Please don't get this because I really tried for you to not be able to run out of material.
