v_p and LTE

Mario Tutuncu-Macias

December 2020

1 Problems

- 1. Let n be the least positive integer for which $149^n 2^n$ is divisible by $3^3 \cdot 5^5 \cdot 7^7$. Find the number of positive integer divisors of n.
- 2. Find the smallest n such that 2013^n ends in 001 (PUMAC 2013 2)
- 3. For a given k, find all n such that 5^k divides $2^n 1$
- 4. $a^{a-1} 1$ is never squarefree for a > 2
- 5. Let $p_1 = 2012$ and $p_n = 2012^{p_{n-1}}$ for n > 1. Find the largest integer k such that $p_{2012} p_{2011}$ is divisible by 2011^k . (PUMAC 2012 6)
- 6. (ISL 1991) Find the largest k such that $1991^k | 1990^{1991^{1992}} + 1992^{1991^{1990}}$
- 7. Show that if n is square free and if x, y are relatively prime, $\frac{x^n + y^n}{(x+y)^3}$ is never an integer
- 8. Let a, b > 1 be positive integers and suppose (aⁿ 1)(bⁿ 1) is a square for all positive integers n. If p is prime then the order of a mod p is the same as the order of b mod p.
 The order of a mod p is the smallest k such that a^k ≡ 1 mod p
- 9. Determine all n such that $\frac{2^n + 1}{n^2}$ is an integer (IMO 1990 3) Please don't get this because I really tried for you to not be able to run out of material.