Fractions in Modular Arithmetic

Rishabh Das
New York City Math Team

1 Multiplicative Inverses

1.1 Definitions

Definition (Multiplicative Inverse)

When $\operatorname{gcd}(a, n)=1$, we say that the multiplicative inverse of a mod $n "$ is the number b such that

$$
a b \equiv 1 \quad(\bmod n .)
$$

We then write $b \equiv a^{-1}(\bmod n)$ or $b \equiv \frac{1}{a}(\bmod n)$.

As an example, we say $\frac{1}{2} \equiv 13(\bmod 25)$ since $2 \cdot 13 \equiv 1(\bmod 25)$.
Note that $x \cdot a^{-1} \equiv x \cdot \frac{1}{a}(\bmod n)$ can also be written as

$$
\frac{x}{a} \quad(\bmod n)
$$

1.2 Existence and Non-Existence

Proof (Proof For Existence)

Let $\left\{n_{1}, n_{2}, \ldots, n_{\varphi(n)}\right\}$ be the set of positive integers less than or equal to n that are relatively prime to n. Note that $a n_{i}$ is relatively prime to n. Also note that if $a n_{i} \equiv a n_{j}(\bmod n)$:

$$
a n_{i} \equiv a n_{j} \quad(\bmod n) \Longrightarrow a\left(n_{i}-n_{j}\right) \equiv 0 \quad(\bmod n)
$$

Since $\operatorname{gcd}(a, n)=1$, we must have $n_{i}-n_{j} \equiv 0(\bmod n)$. Since $1 \leq n_{i}, n_{j} \leq n$, this implies $n_{i}=n_{j}$, or $i=j$. Thus, $\left\{n_{1}, n_{2}, \ldots n_{\varphi(n)}\right\} \equiv\left\{a n_{1}, a n_{2}, \ldots a n_{\varphi(n)}\right\}(\bmod n)$.
Since $n_{1}=1$, this means that $a n_{i} \equiv 1(\bmod n)$ for some i. Thus, $n_{i} \equiv a^{-1}(\bmod p)$.

Thus, we have shown that when $\operatorname{gcd}(a, n)=1$, the multiplicative inverse of $a \bmod p$ exists. We now show that when $\operatorname{gcd}(a, n) \neq 1$, the multiplicative inverse of $a \bmod p$ doesn't exist.

Proof (Proof For Non-Existence)

We do a proof by contradiction. Suppose $\operatorname{gcd}(a, n) \neq 1$ and $a b \equiv 1(\bmod n)$. Then there exists a c such that $a b-n c=1$. Note that $\operatorname{gcd}(a, n) \mid a$ and $\operatorname{gcd}(a, n) \mid n$, so $\operatorname{gcd}(a, n) \mid a b-n c=1$. Thus, $\operatorname{gcd}(a, n)$ must be equal to 1 , a contradiction.

Warning

Whenever using multiplicative inverses and/or fractions mod n for any n, make sure that the denominator is relatively prime to n.

2 Computation With Fractional Mods

From here on out, we assume any denominators are relatively prime to n, where we are taking everything $\bmod n$.

2.1 Multiplication

Fractions modulo n work exactly how we would like/expect them to.

Lemma (Multiplying Fractions mod n)
We have

$$
\frac{a}{c} \cdot \frac{b}{d} \equiv \frac{a b}{c d} \quad(\bmod n)
$$

Proof. The left side is just

$$
\left(a \cdot \frac{1}{c}\right) \cdot\left(b \cdot \frac{1}{d}\right) \equiv a b \cdot \frac{1}{c} \cdot \frac{1}{d} \quad(\bmod n)
$$

while the right side is

$$
(a b) \cdot \frac{1}{c d} \quad(\bmod n)
$$

Thus, if we show $\frac{1}{c} \cdot \frac{1}{d} \equiv \frac{1}{c d}$, then we would be done. Let $\frac{1}{c} \equiv x(\bmod n)$ and $\frac{1}{d} \equiv y(\bmod n)$. Then

$$
\frac{1}{c} \cdot \frac{1}{d} \equiv x y \quad(\bmod n)
$$

We are left to show that $x y \equiv \frac{1}{c d}(\bmod n)$, or that $(x y)(c d) \equiv 1(\bmod n)$. However, note that

$$
(x y)(c d) \equiv(x c)(y d) \equiv 1 \cdot 1 \equiv 1 \quad(\bmod n)
$$

so we are done.
As an example, we see that

$$
\frac{7}{2} \cdot \frac{8}{14} \equiv \frac{7 \cdot 8}{2 \cdot 14} \equiv 2 \quad(\bmod 11)
$$

In fact, what we were taking the expression modulo didn't matter, as long it is coprime to 2 and 14 ; the result will always be 2 .
If we wanted to check this, we could note

$$
\frac{7}{2} \equiv 7 \cdot \frac{1}{2} \equiv 7 \cdot 6 \equiv 42 \equiv 9 \quad(\bmod 11)
$$

while

$$
\frac{8}{14} \equiv \frac{4}{7} \equiv 4 \cdot \frac{1}{7} \equiv 4 \cdot 8 \equiv 32 \equiv 10 \quad(\bmod 11)
$$

so the product of the two is

$$
\frac{7}{2} \cdot \frac{8}{14} \equiv 9 \cdot 10 \equiv 90 \equiv 2 \quad(\bmod 11)
$$

However, note how much more efficient it is to just multiply the fractions!
Exercise 1. Show that we can reduce fractions $\bmod n$ as well.

2.2 Addition

Surprisingly, fractions modulo n work exactly how we would like them to.

Lemma (Adding Fractions mod n)

We have

$$
\frac{a}{c}+\frac{b}{d} \equiv \frac{a d+b c}{c d} \quad(\bmod n)
$$

Proof. Again let $\frac{1}{c} \equiv x(\bmod n)$ and $\frac{1}{d} \equiv y(\bmod n)$. We have already shown above that $\frac{1}{c d} \equiv x y(\bmod n)$. Thus, the right side is

$$
\begin{gathered}
(a d+b c) \cdot \frac{1}{c d} \equiv(a d+b c) \cdot(x y) \equiv(a x)(d y)+(b y)(c x) \equiv(a x) \cdot 1+(b y) \cdot 1 \equiv a x+b y \equiv a \cdot \frac{1}{c}+b \cdot \frac{1}{d} \\
\equiv \frac{a}{c}+\frac{b}{d}(\bmod n)
\end{gathered}
$$

as desired.

2.3 Exercises

Exercise 1. Compute $13^{9}(\bmod 25)$.
Exercise 2. Compute $\left(\frac{1}{3}+\frac{1}{4}\right) \cdot \frac{8}{3}(\bmod 17)$.
Exercise 3. Compute $2020^{39}(\bmod 41)$.

3 An Example of the Power of Fractional Mods

Here is an example from the 2005 IMO .

Example (2005 IMO/4)
Determine all positive integers relatively prime to all the terms of the infinite sequence

$$
a_{n}=2^{n}+3^{n}+6^{n}-1, n \geq 1
$$

Solution. We claim that only 1 is relatively prime to each term of the sequence, which it clearly is. To show no other positive integer works, we will show that any prime p divides some term of the sequence.
If $p=2$ or $p=3$, then take $n=2$. This means

$$
a_{2}=2^{2}+3^{2}+6^{2}-1=48
$$

a multiple of both 2 and 3 . Otherwise, assume $p \geq 5$.
We will pick our n very cleverly. We will pick $n=p-2$. Note that by Fermat's Little Theorem, $a^{p-1} \equiv 1$ $(\bmod p)$ for all a not a multiple of p. However, we can rewrite this as

$$
a^{p-2} \equiv \frac{1}{a} \quad(\bmod p)
$$

for all a not a multiple of p. Thus, when we take $n=p-2$, we see

$$
a_{p-2}=2^{p-2}+3^{p-2}+6^{p-2}-1 \equiv \frac{1}{2}+\frac{1}{3}+\frac{1}{6}-1 \equiv 0 \quad(\bmod p)
$$

so a_{p-2} is a multiple of p.
Thus, for any prime p, there is a term of the sequence that is a multiple of p, so no positive integer other than 1 can be relatively prime to all terms in the sequence.

Exercise

Why are the cases of $p=2$ and $p=3$ separated from the rest of the primes in the above proof?

4 Problems

Enjoy!

Problem 1 (2012 PUMaC Individual Finals). Let p be a prime number greater than 5 . Prove that there exists a positive integer n such that p divides $20^{n}+15^{n}-12^{n}$.

Problem 2 (2019 NEMO Individual/14). Find all primes $p \geq 5$ such that p divides $(p-3)^{p-3}-(p-4)^{p-4}$.
Problem 3 (2011 PUMaC Number Theory/3). What is the sum of all primes p such that $7^{p}-6^{p}+2$ is divisible by 43 ?

Problem 4 (2020 HMMT February Algebra and Number Theory/7). Find the sum of all positive integers n for which

$$
\frac{15 \cdot n!^{2}+1}{2 n-3}
$$

is an integer.

