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1 Multiplicative Inverses

1.1 Definitions

Definition (Multiplicative Inverse)

When gcd(a, n) = 1, we say that the multiplicative inverse of a mod n” is the number b such that

ab ≡ 1 (mod n.)

We then write b ≡ a−1 (mod n) or b ≡ 1
a (mod n).

As an example, we say 1
2 ≡ 13 (mod 25) since 2 · 13 ≡ 1 (mod 25).

Note that x · a−1 ≡ x · 1a (mod n) can also be written as

x

a
(mod n).

1.2 Existence and Non-Existence

Proof (Proof For Existence)

Let {n1, n2, . . . , nϕ(n)} be the set of positive integers less than or equal to n that are relatively prime

to n. Note that ani is relatively prime to n. Also note that if ani ≡ anj (mod n):

ani ≡ anj (mod n) =⇒ a(ni − nj) ≡ 0 (mod n).

Since gcd(a, n) = 1, we must have ni − nj ≡ 0 (mod n). Since 1 ≤ ni, nj ≤ n, this implies ni = nj , or

i = j. Thus, {n1, n2, . . . nϕ(n)} ≡ {an1, an2, . . . anϕ(n)} (mod n).

Since n1 = 1, this means that ani ≡ 1 (mod n) for some i. Thus, ni ≡ a−1 (mod p).

Thus, we have shown that when gcd(a, n) = 1, the multiplicative inverse of a mod p exists. We now show

that when gcd(a, n) 6= 1, the multiplicative inverse of a mod p doesn’t exist.

Proof (Proof For Non-Existence)

We do a proof by contradiction. Suppose gcd(a, n) 6= 1 and ab ≡ 1 (mod n). Then there exists a c such

that ab − nc = 1. Note that gcd(a, n) | a and gcd(a, n) | n, so gcd(a, n) | ab − nc = 1. Thus, gcd(a, n)

must be equal to 1, a contradiction.

Warning

Whenever using multiplicative inverses and/or fractions mod n for any n, make sure that the denomi-

nator is relatively prime to n.
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2 Computation With Fractional Mods
From here on out, we assume any denominators are relatively prime to n, where we are taking everything

mod n.

2.1 Multiplication
Fractions modulo n work exactly how we would like/expect them to.

Lemma (Multiplying Fractions mod n)

We have
a

c
· b
d
≡ ab

cd
(mod n).

Proof. The left side is just (
a · 1

c

)
·
(
b · 1

d

)
≡ ab · 1

c
· 1

d
(mod n)

while the right side is

(ab) · 1

cd
(mod n).

Thus, if we show 1
c ·

1
d ≡

1
cd , then we would be done. Let 1

c ≡ x (mod n) and 1
d ≡ y (mod n). Then

1

c
· 1

d
≡ xy (mod n).

We are left to show that xy ≡ 1
cd (mod n), or that (xy)(cd) ≡ 1 (mod n). However, note that

(xy)(cd) ≡ (xc)(yd) ≡ 1 · 1 ≡ 1 (mod n),

so we are done.

As an example, we see that
7

2
· 8

14
≡ 7 · 8

2 · 14
≡ 2 (mod 11).

In fact, what we were taking the expression modulo didn’t matter, as long it is coprime to 2 and 14; the

result will always be 2.

If we wanted to check this, we could note

7

2
≡ 7 · 1

2
≡ 7 · 6 ≡ 42 ≡ 9 (mod 11)

while
8

14
≡ 4

7
≡ 4 · 1

7
≡ 4 · 8 ≡ 32 ≡ 10 (mod 11),

so the product of the two is
7

2
· 8

14
≡ 9 · 10 ≡ 90 ≡ 2 (mod 11).

However, note how much more efficient it is to just multiply the fractions!

Exercise 1. Show that we can reduce fractions mod n as well.
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2.2 Addition
Surprisingly, fractions modulo n work exactly how we would like them to.

Lemma (Adding Fractions mod n)

We have
a

c
+

b

d
≡ ad + bc

cd
(mod n).

Proof. Again let 1
c ≡ x (mod n) and 1

d ≡ y (mod n). We have already shown above that 1
cd ≡ xy (mod n).

Thus, the right side is

(ad + bc) · 1

cd
≡ (ad + bc) · (xy) ≡ (ax)(dy) + (by)(cx) ≡ (ax) · 1 + (by) · 1 ≡ ax + by ≡ a · 1

c
+ b · 1

d

≡ a

c
+

b

d
(mod n)

as desired.

2.3 Exercises
Exercise 1. Compute 139 (mod 25).

Exercise 2. Compute

(
1

3
+

1

4

)
· 8

3
(mod 17).

Exercise 3. Compute 202039 (mod 41).

3 An Example of the Power of Fractional Mods
Here is an example from the 2005 IMO.

Example (2005 IMO/4)

Determine all positive integers relatively prime to all the terms of the infinite sequence

an = 2n + 3n + 6n − 1, n ≥ 1.

Solution. We claim that only 1 is relatively prime to each term of the sequence, which it clearly is. To show

no other positive integer works, we will show that any prime p divides some term of the sequence.

If p = 2 or p = 3, then take n = 2. This means

a2 = 22 + 32 + 62 − 1 = 48,

a multiple of both 2 and 3. Otherwise, assume p ≥ 5.

We will pick our n very cleverly. We will pick n = p − 2. Note that by Fermat’s Little Theorem, ap−1 ≡ 1

(mod p) for all a not a multiple of p. However, we can rewrite this as

ap−2 ≡ 1

a
(mod p)

for all a not a multiple of p. Thus, when we take n = p− 2, we see

ap−2 = 2p−2 + 3p−2 + 6p−2 − 1 ≡ 1

2
+

1

3
+

1

6
− 1 ≡ 0 (mod p),

so ap−2 is a multiple of p.

Thus, for any prime p, there is a term of the sequence that is a multiple of p, so no positive integer other

than 1 can be relatively prime to all terms in the sequence.
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Exercise

Why are the cases of p = 2 and p = 3 separated from the rest of the primes in the above proof?

4 Problems
Enjoy!

Problem 1 (2012 PUMaC Individual Finals). Let p be a prime number greater than 5. Prove that there

exists a positive integer n such that p divides 20n + 15n − 12n.

Problem 2 (2019 NEMO Individual/14). Find all primes p ≥ 5 such that p divides (p− 3)p−3− (p− 4)p−4.

Problem 3 (2011 PUMaC Number Theory/3). What is the sum of all primes p such that 7p − 6p + 2 is

divisible by 43?

Problem 4 (2020 HMMT February Algebra and Number Theory/7). Find the sum of all positive integers

n for which
15 · n!2 + 1

2n− 3

is an integer.
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