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Problems

Problem 1. How many permutations of N,Y,C,M, T are there such that there is exactly one letter between

N and Y ?

Problem 2. If x and y are real numbers such that x3 = 16
y2 and y3 = 8

x2 , then compute (x+ y)5.

Problem 3. Find the largest positive integer n such that n3 leaves a remainder of 1 when divided by n− 3.

Problem 4. In 4ABC, let AB = 13, BC = 14, and CA = 15. Let D be the foot of the altitude from A to

BC. Let E and F be points on segments AB and AC such that AEDF is a parallelogram. Compute the

area of this parallelogram.

Problem 5. How many solutions for x in the range (0, 2020) are there such that

bxc2 + 2020{x}2 = x2?

(Here, bxc denotes the largest integer less than or equal to x, while {x} denotes x− bxc .)

Problem 6. Let f(x) = gcd(x2, 2x+ 6) for all positive integers x and let k be the maximum possible value

of f(x). Suppose n is the fifth smallest positive integer such that f(n) = k. Find the ordered pair (k, n).

Problem 7. Let 4O1XY be isosceles, with O1X = O1Y and ∠XO1Y 6= 90◦. Let O2 be the circumcenter

of 4O1XY , and let O3 be the circumcenter of 4O2XY . If ∠XO1Y = ∠XO3Y = θ, find the sum of all

possible values of θ in degrees.

Problem 8. How many integers between 1 and 1023, inclusive, are there such that when expressed in binary,

every 0 is adjacent to another 0, and every 1 is adjacent to another 1? (For example, the binary integer

11002 has this property, but the binary integer 10102 does not.)

Problem 9. Call a positive integer m ridonkulous if for all positive integers n, the set

{5040n, 5040n+ 1, 5040n+ 2, . . . , 5040n+ 5040}

contains a multiple of m. How many ridonkulous numbers are there?

Problem 10. Let a, b, and c be the roots of x3 − 9x− 2020 = 0. Compute

(a2 − bc)(b2 − ca)(c2 − ab).

Problem 11. In 4ABC, the midpoints of AB and AC are M and N respectively. Let BN and CM

intersect at G. If AMGN is cyclic, BC = 6, and ∠BAC = 30◦, compute (AB +AC)2.

Problem 12. Compute
4∑
a=0

4∑
b=0

4∑
c=0

(a+ b+ c)!

a!b!c!
· (12− a− b− c)!

(4− a)!(4− b)!(4− c)!
.
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Problem 13. In 4ABC, AB = 5, BC = 7, and CA = 8. Let the perpendicular bisector of BC intersect

lines AB and AC at X and Y . Let the circumcircle of 4ABY be ω1 and the circumcircle of 4ACX be ω2.

Let ω1 and ω2 intersect at a point T 6= A. Let the tangents to ω1 and ω2 at T intersect BC at U and V ,

respectively. Compute UV .

Problem 14. Compute

8∏
k=1

cos

(
k2π

17

)
.

Problem 15. Let S be the set of positive integer divisors of 1000. How many functions f : S −→ S are

there such that for any x, y ∈ S,

gcd((f(x), f(y)) = f(gcd(x, y))?

Problem 16. How many ways are there to choose integers x, y, z between 1 and 103, inclusive, such that

x2 + y2 + z2 − xyz ≡ 4 (mod 103)?
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Solutions

Problem 1

How many permutations of N,Y,C,M, T are there such that there is exactly one letter between N and

Y ?

Solution. This means that the N and the Y must be separated by exactly one letter. There are exactly 6

ways to do this: three choices for which spots they fill up and two choices for the order in which they go.

The rest of the letters can go in any order in the three remaining spots. Thus, the answer is 6 · 3! = 36 .

3



Problem 2

If x and y are real numbers such that x3 = 16
y2 and y3 = 8

x2 , then compute (x+ y)5.

Solution. Rearrange the equations into

x3y2 = 16 and x2y3 = 8.

Multiplying these together give x5y5 = 27, so xy = 27/5. Now adding our two equations together give

x2y2(x+ y) = 24

214/5(x+ y) = 23 · 3

x+ y = 21/5 · 3
(x+ y)5 = 2 · 35,

so (x+ y)5 = 486 .
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Problem 3

Find the largest positive integer n such that n3 leaves a remainder of 1 when divided by n− 3.

Solution. Note that n−3 | n3−27 since the right side is a difference of cubes. Since we also need n−3 | n3−1

by the problem statement, we must have

n− 3 | (n3 − 1)− (n3 − 27) = 26.

The largest such n is 29 .
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Problem 4

In 4ABC, let AB = 13, BC = 14, and CA = 15. Let D be the foot of the altitude from A to BC. Let

E and F be points on segments AB and AC such that AEDF is a parallelogram. Compute the area

of this parallelogram.

Solution. By Heron’s formula, the area of 4ABC is

√
21 · 6 · 7 · 8 = 84.

Then the height from A to BC multiplied by BC must be equal to 2 · 84 = 168, so the height from A to BC

is 12. Then BD = 5 and CD = 9 from well-known right triangles.

(The above facts are all well-known about a 13− 14− 15 triangle.)

A

B CD

E

F

5 9

Note that the area of AEDF is the area of ABC minus the two areas of the red triangles. But the left red

triangle is
(

5
14

)2
the area of the original triangle, and the right red triangle is

(
9
14

)2
the area of the original

triangle. Thus, the area of the green region is(
1− 25

196
− 81

196

)
[ABC] =

90

196
· 84 =

45

98
· 84 =

270

7
.
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Problem 5

How many solutions for x in the range (0, 2020) are there such that

bxc2 + 2020{x}2 = x2?

(Here, bxc denotes the largest integer less than or equal to x, while {x} denotes x− bxc .)

Solution. Replace x with bxc+ {x} on the right side and expand. We are left with

bxc2 + 2020{x}2 = x2

bxc2 + 2020{x}2 = bxc2 + 2 bxc {x}+ {x}2

2019{x}2 = 2 bxc {x}
{x}(2019{x} − 2 bxc) = 0

Thus, either {x} = 0 or 2
2019 bxc = {x}. The former produces solutions of all integers in the range (0, 2020),

of which there are 2019.

We now look at the latter equation. Note that {x} < 1, so bxc < 2019
2 . After determining bxc, the value of

x is uniquely determined as we can determine {x}. There are 1009 possible values of bxc, so there are 1009

possible numbers in this case.

The answer is then 2019 + 1009 = 3028 .
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Problem 6

Let f(x) = gcd(x2, 2x+ 6) for all positive integers x and let k be the maximum possible value of f(x).

Suppose n is the fifth smallest positive integer such that f(n) = k. Find the ordered pair (k, n).

Solution. Note that

f(x) = gcd(x2, 2x+ 6) ≤ 2 · gcd(x2, x+ 3) ≤ 2 · gcd(x2 − (x+ 3)(x− 3), x+ 3) = 2 · gcd(9, x+ 3) ≤ 18.

Equality holds when 9 | x + 3 and 2 | x, which if and only if x ≡ 6 (mod 18) by CRT. The fifth smallest

integer satisfying this is 5 · 18− 12 = 78. Thus, k = 18 and n = 78, giving (18, 78) .
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Problem 7

Let 4O1XY be isosceles, with O1X = O1Y and ∠XO1Y 6= 90◦. Let O2 be the circumcenter of

4O1XY , and let O3 be the circumcenter of 4O2XY . If ∠XO1Y = ∠XO3Y = θ, find the sum of all

possible values of θ in degrees.

Solution. Suppose ∠XOiY = α, for some i ∈ {1, 2}.
If α < 90◦, then ∠XOi+1Y = 2α.

If α > 90◦, then ∠XOi+1Y = 360◦ − 2α.

This leaves us with one of four possibilities:

θ −→ 2θ −→ 4θ = θ

θ −→ 2θ −→ 360◦ − 4θ = θ

θ −→ 360◦ − 2θ −→ 720◦ − 4θ = θ

θ −→ 360◦ − 2θ −→ 4θ − 360◦ = θ

The first case yields θ = 0◦, which is not valid.

The second case yields θ = 72◦. We can check that our moves are indeed valid: 72◦ −→ 144◦ −→ 72◦ are

both valid moves.

The third case yields θ = 144◦. We can check that our moves are indeed valid: 144◦ −→ 72◦ −→ 144◦ are

both valid moves.

The last case yields θ = 120◦. We can check that our moves are indeed valid: 120◦ −→ 120◦ −→ 120◦ are

both valid moves.

The answer is 72◦ + 144◦ + 120◦ = 336◦ .
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Problem 8

How many integers between 1 and 1023, inclusive, are there such that when expressed in binary, every

0 is adjacent to another 0, and every 1 is adjacent to another 1? (For example, the binary integer 11002

has this property, but the binary integer 10102 does not.)

Solution. Let an denote the number of such numbers which have exactly n digits when written in binary.

We seek a1 + a2 + a3 + · · ·+ a10. We now compute a recursive formula for an.

Note that the first digit must be a 1, so the next digit must also be a 1. Let the first k ≥ 2 digits be 1. Then

the remaining n − k digits have the same rules as before, except they are required to start with a 0. If we

interchange the roles of 1s and 0s, we see that there are an−k ways to finish. Thus, we have

an = an−2 + an−3 + · · ·+ a2 + a1 + a0,

where we define a0 = 1. Similarly, we have

an+1 = an−1 + an−2 + · · ·+ a2 + a1 + a0.

Subtracting the two, we obtain

an+1 = an + an−1.

Since a0 = 1 and a1 = 0, we see that an = Fn−1, where Fk is the kth Fibonacci number.

Now

a1 + a2 + · · ·+ a10 = a12 − a0 = F11 − 1 = 89− 1 = 88 .
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Problem 9

Call a positive integer m ridonkulous if for all positive integers n, the set

{5040n, 5040n+ 1, 5040n+ 2, . . . , 5040n+ 5040}

contains a multiple of m. How many ridonkulous numbers are there?

It is clear that all positive integers at most 5040 are ridonkulous. We claim that the ridonkulous numbers

that are greater than 5040 are precisely 5040 + d, where d | 5040.

To prove this claim, first we show that these are all ridonkulous. Suppose d | 5040. Let d′ = 5040
d . Since

d | 5040 + d, we just need 5040 + d to divide an element in the set

{5040n, 5040n+ d, 5040n+ 2d, . . . , 5040n+ 5040}.

We can divide everything by d, so we need d′ + 1 to divide a number in the set

{d′n, d′n+ 1, d′n+ 2, . . . , d′n+ d′}.

This is a set of d′ + 1 consecutive positive integers, so d′ + 1 must divide one of them.

We must now prove the converse. Let our number be 5040 + k with k - 5040. Let d = gcd(k, 5040) < k. Let

d′ = 5040
d and k′ = k

d > 1. Since d | 5040 + k, we must have 5040 + k dividing a number in the set

{5040n, 5040n+ d, 5040n+ 2d, . . . , 5040n+ 5040}

for all n. We can divide everything by d, so we need d′+ k′ to divide a number in the set {d′n, d′n+ 1, d′n+

2, · · · , d′n+ d′} for all n. Note that gcd(d′+ k′, d′) = gcd(d′, k′) = 1 since otherwise we could have increased

d. Thus, we can choose an n such that d′n ≡ 1 (mod d′+ k′). For this n, since k′ > 1, no number in the set

is a multiple of d′ + k′, so 5040 + k isn’t ridonkulous.

Thus, the claim is proven. There are 5040 integers at most 5040, and there are 60 divisors of 5040 = 24 ·32 ·5·7,

so the answer is

5040 + 60 = 5100 .
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Problem 10

Let a, b, and c be the roots of x3 − 9x− 2020 = 0. Compute

(a2 − bc)(b2 − ca)(c2 − ab).

Solution. By Vieta’s, we have abc = 2020. Then our expression reduces to(
a2 − 2020

a

)(
b2 − 2020

b

)(
c2 − 2020

c

)
=

(a3 − 2020)(b3 − 2020)(c3 − 2020)

abc
.

However, a3 − 2020 = 9a, b3 − 2020 = 9b, and c3 − 2020 = 9c. Thus, our expression reduces to

729abc

abc
= 729 .

Remark. (a2 − bc)(b2 − ca)(c2 − ab) + (ab+ bc+ ca)3 = abc(a+ b+ c)3
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Problem 11

In 4ABC, the midpoints of AB and AC are M and N respectively. Let BN and CM intersect at G.

If AMGN is cyclic, BC = 6, and ∠BAC = 30◦, compute (AB +AC)2.

Solution (Reflection Across Midpoint). Note that G is just the centroid of 4ABC. Let the midpoint of BC

be P . We need ∠BGC = 150◦, so the reflection of G over P must lie on (ABC). Then by power of a point,
m2

a

3 = a2

4 = 9, where ma is the length of the A-median. Thus, ma = 3
√

3.

By Law of Cosines on ∠BAC of 4ABC, we have b2 + c2 −
√

3bc = 36. By the median formula, we have

2(b2 + c2)− 36

4
= m2

a = 27,

or b2 + c2 = 72. Then bc = 12
√

3, so (b+ c)2 = 72 + 24
√

3.

A

B C

M N

G

P

G′

Solution (Power of a Point). Notice that the centroid divides a median in a 2 : 1 ratio. This means BG :

GN = 2 : 1 and CG : GM = 2 : 1. By power of a point, BG · BN = BM · BA, which can be rewritten as

BG · 3BG = BM · 2BM . Similarly, CG · 3CG = CM · 2CM . Thus, if GN = x, then

BG = 2x,

BM = x
√

3,

AM = x
√

3.

Similarly, if GM = y, then

CG = 2y,

CN = y
√

3,

AN = y
√

3.

From Law of Cosines on 4ABC, we see that

62 = 12x2 + 12y2 − 12xy
√

3, or 3 = x2 + y2 − xy
√

3.

Since ∠BGC = 150◦ we see that

62 = 4x2 + 4y2 + 4xy
√

3, or 9 = x2 + y2 + xy
√

3.

Thus, x2 + y2 = 6 and xy =
√

3. Now (AB + AC)2 = 12(x + y)2, which is simply 12(x2 + 2xy + y2), or

72 + 24
√

3 .
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Problem 12

Compute
4∑
a=0

4∑
b=0

4∑
c=0

(a+ b+ c)!

a!b!c!
· (12− a− b− c)!

(4− a)!(4− b)!(4− c)!
.

Solution (Combinatorial Interpretation). For a fixed (a, b, c), note that

(a+ b+ c)!

a!b!c!

represents the number of paths from (0, 0, 0) to (a, b, c), while

(12− a− b− c)!
(4− a)!(4− b)!(4− c)!

represents the number of paths from (a, b, c) to (4, 4, 4). Thus, the product

4∑
a=0

4∑
b=0

4∑
c=0

(a+ b+ c)!

a!b!c!
· (12− a− b− c)!

(4− a)!(4− b)!(4− c)!

is the number of paths from (0, 0, 0) to (4, 4, 4) that pass through (a, b, c). Then the summation is

4∑
a=0

4∑
b=0

4∑
c=0

[Number of paths through (a, b, c)] =
∑
path

[Number of lattice points on path] =

(
12

4, 4, 4

)
· 13.

This is equal to

13!

243
=

13 · 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
24 · 24 · 24

=
13 ·��12 · 11 · 10 · 9 · �8 · 7 · �6 · 5 · �4 · �3 · �2 · 1

��24 ·��24 ·��24

= (13 · 11 · 7)(10 · 9 · 5) = 1001 · 450 = 450450 .

Solution (Algebra). Observe that the numerator can alternatively be expressed as

(12− a− b− c)!(a+ b+ c)! =
12!(
12

a+b+c

)
and the denominator can be expressed as

a!b!c!(4− a)!(4− b)!(4− c)! =
4!(
4
a

) · 4!(
4
b

) · 4!(
4
b

) .
Thus, we can rewrite the fraction in the sum as

(a+ b+ c)!

a!b!c!
· (12− a− b− c)!

(4− a)!(4− b)!(4− c)!
=

12!
(

4
a

)(
4
b

)(
4
c

)
(4!)3

(
12

a+b+c

) .
We compute the sum by fixing the value of a+ b+ c. The value of a+ b+ c ranges from 0 to 12 (since a, b,

and c each range from 0 to 4). The sum becomes

12∑
s=0

∑
a+b+c=s

12!
(

4
a

)(
4
b

)(
4
c

)
(4!)3

(
12

a+b+c

) =

12∑
s=0

∑
a+b+c=s

12!
(

4
a

)(
4
b

)(
4
c

)
(4!)3

(
12
s

) .

Now, we attempt to compute the inner sum using a combinatorial argument.
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Consider a committee of 12 people, and suppose we choose s people from this committee. This can be

done in
(

12
s

)
ways. On the other hand, we can split up the committee into three groups of 4. We choose a

people from the first group, b people from the second group, and c people from the third group such that

0 ≤ a, b, c ≤ 4 and a + b + c = 12. This can be done in
(

4
a

)(
4
b

)(
4
c

)
ways for each choice of (a, b, c) satisfying

these conditions. This means ∑
a+b+c=s

(
4

a

)(
4

b

)(
4

c

)
=

(
12

s

)
.

(Alternatively, one can look at the coefficient of xs when (1 + x)12 = [(1 + x)4]3 is expanded.)

Thus,
12∑
s=0

∑
a+b+c=s

12!
(

4
a

)(
4
b

)(
4
c

)
(4!)3

(
12
s

) =

12∑
s=0

12!

(4!)3
=

13!

243
= 450450 .
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Problem 13

In 4ABC, let AB = 5, BC = 7, and CA = 8. Let the perpendicular bisector of BC intersect lines AB

and AC at X and Y . Let the circumcircle of 4ABY be ω1 and the circumcircle of 4ACX be ω2. Let

ω1 and ω2 intersect at a point T 6= A. Let the tangents to ω1 and ω2 at T intersect BC at U and V ,

respectively. Compute UV .

Solution. The main claim is that T is the circumcenter of 4ABC.

A

B C

X

Y

T

U V

Note that ∠AXC = ∠BXC = 180◦ − 2∠B, so ∠ATC = 2∠B. Similarly, ∠BTA = 2∠C. These two facts

combined show that T is the circumcenter of 4ABC.

The tangent to ω1 at T is parallel to AB as AT = BT , and the tangent to ω2 at T is parallel to AC as

AT = CT . Thus, 4TUV ∼ 4ABC. To find the ratio of similitude, we compute the ratio of the altitudes

from T and A in these two triangles. The altitude from A to BC is

2[ABC]

BC
=

2 ·
√

10 · 5 · 3 · 2
7

=
20
√

3

7
.

Since T is the circumcenter, the altitude from T to UV is R cosA. By the Law of Cosines we compute cosA

as 1
2 , and we have

R =
abc

4[ABC]
=

5 · 7 · 8
40
√

3
=

7
√

3

3
,

so the altitude from T to UV has length 7
√

3
6 . This means the ratio of similitude is

7
√

3/6

20
√

3/7
=

49

120
.

Since BC = 7, this means UV = 49
120 · 7 =

343

120
.
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Problem 14

Compute

8∏
k=1

cos

(
k2π

17

)
.

Solution (Powers of 2). First we compute the sign of the expression. It is easy to see that

cos

(
9π

17

)
, cos

(
16π

17

)
, cos

(
25π

17

)
, cos

(
49π

17

)
are the only positive terms, so the expression is positive. We now compute the absolute value of the

expression.

Note that 2 is a quadratic residue mod 17 (by, for example, 36) and ord17(2) = 8. Thus, the powers of 2 are

the same as the perfect squares mod 17. Thus, we see∣∣∣∣∣
8∏
k=1

cos

(
k2π

17

)∣∣∣∣∣ =

8∏
k=1

∣∣∣∣cos

(
k2π

17

)∣∣∣∣ =

7∏
k=0

∣∣∣∣cos

(
2kπ

17

)∣∣∣∣ =

∣∣∣∣∣
7∏
k=0

cos

(
2kπ

17

)∣∣∣∣∣ .
We now ignore the absolute value (it turns out to be negative.) Multiplying the expression by sin

(
π
17

)
, it

will telescope by the identity sin 2θ = 2 sin θ cos θ. Then it is equal to

1

256
·

sin
(

256π
17

)
sin
(
π
17

) = − 1

256
,

so the answer is
1

256
.

Solution (Multiplying by sin). We see similar to the first solution that the answer is positive, so now we can

take some absolute values.

Let A =

8∏
k=1

cos

(
k2π

17

)
and B =

8∏
k=1

sin

(
k2π

17

)
. By the double angle formula, we have

|AB| = 1

28

8∏
k=1

∣∣∣∣sin(2k2π

17

)∣∣∣∣ .
However, note that 2 is a quadratic residue mod 17, so the set of 2k2 is equal to the set of quadratic residues

mod 17. Thus, we have

|AB| = 1

28
|B| =⇒ |A| = 1

256
,

so A =
1

256
.
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Problem 15

Let S be the set of positive integer divisors of 1000. How many functions f : S −→ S are there such

that for any x, y ∈ S,

gcd((f(x), f(y)) = f(gcd(x, y))?

Solution. We put the 16 divisors in the grid such that if we give each points coordinates such as the ones in

an (x, y) plane (with the bottom left receiving (0, 0)) then (i, j) corresponds to 2i5j . Let f(2a5b) = 2xab5yab

for all 0 ≤ a, b ≤ 3.

(x00, y00)

(x01, y01)

(x02, y02)

(x03, y03)

(x10, y10)

(x11, y11)

(x12, y12)

(x13, y13)

(x20, y20)

(x21, y21)

(x22, y22)

(x23, y23)

(x30, y30)

(x31, y31)

(x32, y32)

(x33, y33)

The condition now becomes

(min{xab, xcd},min{yab, ycd}) = (xmin{a,c},min{b,d}, ymin{a,c},min{b,d})

for all 0 ≤ a, b, c, d ≤ 3. It is clear that the x’s and the y’s act independently, so we count the number of

ways to assign the x’s and then square the result.

We need min{xab, xcd} = xmin{a,c},min{b,d} for all 0 ≤ a, b, c, d ≤ 3. We claim it is enough to determine the

green squares. If we were to determine the green squares, then note that min{x3i, x33} = x3i, so x3i ≤ x33,

and similarly xj3 ≤ x33. Now note

min{xi3, x3j} = xmin{i,3},min{3,j} = xij ,

so determining the green squares does determine the other squares. We are still left to show that this

configuration does indeed work. This is not too hard to prove (but annoying to write) so it’s left as an

exercise to the reader.

We must have x03 ≤ x13 ≤ x23 ≤ x33 ≥ x32 ≥ x31 ≥ x30. If x33 = k, then by standard methods (such as

stars and bars) there are
(

3+k
3

)
solutions to one side of the inequality, so there are

(
3+k

3

)2
solutions total.

Then there are (
3

3

)2

+

(
4

3

)2

+

(
5

3

)2

+

(
6

3

)2

= 1 + 16 + 100 + 400 = 517.

Since we have ignored the y’s thus far, the answer is

5172 = 267289
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Problem 16

How many ways are there to choose integers x, y, z between 1 and 103, inclusive, such that x2 + y2 +

z2 − xyz ≡ 4 (mod 103)?

Solution. Treating the congruence x2 + y2 + z2 − xyz − 4 ≡ 0 (mod 103) as a quadratic equation in x, we

can solve it using the quadratic formula:

x =
yz ±

√
(yz)2 − 4y2 − 4z2 + 16

2
.

If y and z are fixed constants, then we can consider the discriminant ∆ of this quadratic equation. If the

discriminant is a nonzero perfect square (mod 103), then there are two solutions for x (mod 103). If the

discriminant is a multiple of p, then there is exactly 1 solution for x (mod 103). Finally, if the discriminant

is not a perfect square (mod 103), then there are no solutions for x (mod 103). For this reason, it’s enough

to find the number of pairs (y, z) (mod 103) such that the discriminant is:

• A nonzero perfect square (mod 103),

• A multiple of 103, or

• Not a perfect square (mod 103).

To do this, we require the Legendre symbol and some algebra. Because 1+
(

∆
103

)
gives the number of solutions

for x (mod 103) for a given pair (y, z) (mod 103), it is enough to compute

103∑
y=1

103∑
z=1

(
1 +

(
y2z2 − 4y2 − 4z2 + 16

103

))
= 1032 +

103∑
y=1

103∑
z=1

(
y2z2 − 4y2 − 4z2 + 16

103

)
.

Notice that y2z2 − 4y2 − 4z2 + 16 factors as (y2 − 4)(z2 − 4), so this sum can be rewritten as

1032 +

103∑
y=1

103∑
z=1

(
y2 − 4

103

)(
z2 − 4

103

)
= 1032 +

103∑
y=1

(
y2 − 4

103

) 103∑
z=1

(
z2 − 4

103

)

= 1032 +

(
103∑
y=1

(
y2 − 4

103

))( 103∑
z=1

(
z2 − 4

103

))

= 1032 +

(
103∑
y=1

(
y2 − 4

103

))2

.

Thus, it remains to compute
∑103
y=1

(
y2−4
103

)
. To do this, notice that

103∑
y=1

(
y2 − 4

103

)
= 103 +

103∑
y=1

(
y2 − 4

103

)
− 103 =

103∑
y=1

(
1 +

(
y2 − 4

103

))
− 103.

The sum on the right is the number of solutions to the congruence y2 − 4 ≡ w2 (mod 103), which we can

rewrite as y2 −w2 ≡ 4 (mod 103). Setting y+w = k and y−w = 4
k where k is nonzero (mod 103), we get

a unique ordered pair (w, y) satisfying this congruence. For each nonzero k, it is possible to get a unique

ordered pair (w, y) in this manner. Thus, the sum on the right is 102, implying that

103∑
y=1

(
y2 − 4

103

)
= −1,

giving a final answer of 1032 + 1 = 10610 .

Solution (Epic substitution). Let p = 103. We will first prove a lemma.
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Lemma. The equation x2 + y2 + z2 − xyz = 4 holds if and only if x = a+ 1
a , y = b+ 1

b , and z = c+ 1
c for

some a, b, c ∈ Fp2 such that abc = 1.

Proof. First, assuming that abc = 1, we can simplify

x2 + y2 + z2 − xyz =

(
a+

1

a

)2

+

(
b+

1

b

)2

+

(
c+

1

c

)2

−
(
a+

1

a

)(
b+

1

b

)(
c+

1

c

)
= 4 + (a2 + b2 + c2) +

(
1

a2
+

1

b2
+

1

c2

)
−
(
bc

a
+
ac

b
+
ab

c

)
−
(
a

bc
+

b

ac
+

c

ab

)
= 4 + (a2 + b2 + c2) +

(
1

a2
+

1

b2
+

1

c2

)
−
(
abc

a2
+
abc

b2
+
abc

c2

)
−
(
a2

abc
+

b2

abc
+

c2

abc

)
= 4,

because abc = 1. To prove the converse, suppose x = r + 1
r and y = s+ 1

s . Through the quadratic formula,

we can solve for z as

z =
xy ±

√
(x2 − 4)(y2 − 4)

2

=

(
r + 1

r

) (
s+ 1

s

)
±
(
r − 1

r

) (
s− 1

s

)
2

so either z = rs + 1
rs or z = r

s + s
r . If z = rs + 1

rs , then we can take a = r, b = s, and c = 1
rs , while if

z = r
s + s

r we can take a = r, b = 1
s , and c = s

r . This proves the lemma.

Using this lemma, we can assume that x = a+ 1
a , y = b+ 1

b , and z = c+ 1
c where abc = 1. Since x, y, z ∈ Fp,

we first find the number of triples (a, b, c) with a, b, c ∈ Fp2 such that abc = 1 and a + 1
a , b + 1

b , and c + 1
c

are all in Fp. To do this, observe that the equation x = t+ 1
t only has solutions a and 1

a for t. On the other

hand, raising the equation x = a+ 1
a to the pth power gives xp = ap+ 1

ap . Because xp = x by Fermat’s Little

Theorem, we see that ap is a solution to the equation x = t + 1
t as well. In other words, either ap = a or

ap = 1
a . Through similar reasoning for y and z, we arrive at the conditions

ap+1 = 1 or ap−1 = 1,

bp+1 = 1 or bp−1 = 1,

cp+1 = 1 or cp−1 = 1,

abc = 1.

Lemma. One of the two equations ap+1 = bp+1 = cp+1 = 1 or ap−1 = bp−1 = cp−1 = 1 must hold.

Proof. Without loss of generality, we may assume that ak = bk = 1, for some k ∈ {p−1, p+1}. Since c = 1
ab ,

we see that ck = 1
akbk

= 1, as desired.

We now split the counting solutions into two cases, depending on the value of k ∈ {p−1, p+ 1}. It is enough

to choose a and b, because c = 1
ab . If k = p− 1, then there are (p− 1)2 ways to choose a and b because the

polynomial tp−1−1 has exactly p−1 roots in Fp. Similarly, if k = p+1, then there are (p+1)2 ways to choose

a and b because the polynomial tp+1−1 has exactly p+1 roots in Fp2 . In total, this gives (p−1)2 +(p+1)2 =

2p2 + 2 ways to choose a working triple (a, b, c). However, observe that if (a, b, c) gives a valid triple (x, y, z),

then so does
(

1
a ,

1
b ,

1
c

)
! Furthermore, the triples (1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1) were also counted

twice because they satisfy both ap+1 = bp+1 = cp+1 = 1 and ap−1 = bp−1 = cp−1 = 1. Thus, every triple

(x, y, z) was counted exactly twice, so we divide by 2 to get p2 + 1 = 10610 .
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