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December 7, 2020

Problems

Problem 1. How many permutations of N, Y, C, M, T are there such that there is exactly one letter between
N and Y7

Problem 2. If x and y are real numbers such that 2% = % and y3 = l%, then compute (z + y)5.

Problem 3. Find the largest positive integer n such that n? leaves a remainder of 1 when divided by n — 3.

Problem 4. In AABC, let AB =13, BC = 14, and CA = 15. Let D be the foot of the altitude from A to
BC'. Let E and F be points on segments AB and AC such that AEDF is a parallelogram. Compute the
area of this parallelogram.

Problem 5. How many solutions for z in the range (0,2020) are there such that
|z)? + 2020{z}? = 2?7
(Here, | x| denotes the largest integer less than or equal to x, while {z} denotes x — [z].)

Problem 6. Let f(z) = ged(«2, 22 + 6) for all positive integers 2 and let k be the maximum possible value
of f(x). Suppose n is the fifth smallest positive integer such that f(n) = k. Find the ordered pair (k,n).

Problem 7. Let AO; XY be isosceles, with O1 X = O1Y and ZXO1Y # 90°. Let Oy be the circumcenter
of AO1 XY, and let O3 be the circumcenter of AO;, XY . If ZXO1Y = ZXO3Y = 6, find the sum of all
possible values of 6 in degrees.

Problem 8. How many integers between 1 and 1023, inclusive, are there such that when expressed in binary,
every 0 is adjacent to another 0, and every 1 is adjacent to another 17 (For example, the binary integer
11002 has this property, but the binary integer 10105 does not.)

Problem 9. Call a positive integer m ridonkulous if for all positive integers n, the set
{5040n, 5040n + 1, 5040n + 2, ..., 5040n + 5040}
contains a multiple of m. How many ridonkulous numbers are there?
Problem 10. Let a,b, and ¢ be the roots of 23 — 92 — 2020 = 0. Compute
(a® — be)(b? — ca)(c® — ab).

Problem 11. In AABC, the midpoints of AB and AC are M and N respectively. Let BN and C'M
intersect at G. If AMGN is cyclic, BC = 6, and ZBAC = 30°, compute (AB + AC)?.

Problem 12. Compute

4 4 4
(a+b+c)! (12—a—b—2¢)!
ZZZ alble! (4= a)l(4—b)(4—o)



Problem 13. In AABC, AB = 5,BC =7, and CA = 8. Let the perpendicular bisector of BC intersect
lines AB and AC at X and Y. Let the circumcircle of AABY be w; and the circumcircle of AACX be ws.
Let wy and wo intersect at a point T' # A. Let the tangents to wy and we at T intersect BC at U and V,
respectively. Compute UV'.

8
k2
Problem 14. Compute kl:[l cos (;) .

Problem 15. Let S be the set of positive integer divisors of 1000. How many functions f : S — S are
there such that for any z,y € S,

ged((f (), f(y)) = f(ged(,y))?

Problem 16. How many ways are there to choose integers x,y, z between 1 and 103, inclusive, such that
22 +y? + 22 — 2yz =4 (mod 103)?



Solutions

Problem 1

How many permutations of N,Y,C, M,T are there such that there is exactly one letter between N and
Y?

Solution. This means that the N and the Y must be separated by exactly one letter. There are exactly 6
ways to do this: three choices for which spots they fill up and two choices for the order in which they go.
The rest of the letters can go in any order in the three remaining spots. Thus, the answer is 6 - 3! = .



Problem 2

If z and y are real numbers such that 2% = ;—2' and y3 = %, then compute (z + y)°.

Solution. Rearrange the equations into
3y? = 16 and z?%y® = 8.
Multiplying these together give 2°y® = 27, so zy = 27/5. Now adding our two equations together give

2y (x4 y) =24
2M/5 (x4 y)=2%.3
r4y=2Y5.3
(z+y)® =235

so (z +y)> =[486].



Problem 3

Find the largest positive integer n such that n® leaves a remainder of 1 when divided by n — 3.

Solution. Note that n—3 | n® —27 since the right side is a difference of cubes. Since we also need n—3 | n®—1
by the problem statement, we must have

n—3](n*—1)—(n®—27) = 26.

The largest such n is .



Problem 4

In AABC, let AB =13, BC = 14, and CA = 15. Let D be the foot of the altitude from A to BC'. Let
FE and F be points on segments AB and AC such that AEDF is a parallelogram. Compute the area
of this parallelogram.

Solution. By Heron’s formula, the area of AABC' is
V21-6-7-8=284.

Then the height from A to BC' multiplied by BC must be equal to 2 -84 = 168, so the height from A to BC'
is 12. Then BD =5 and CD =9 from well-known right triangles.

(The above facts are all well-known about a 13 — 14 — 15 triangle.)

A

B 5 D 9 C

Note that the area of AEDF is the area of ABC minus the two areas of the red triangles. But the left red

triangle is (15—4)2 the area of the original triangle, and the right red triangle is (%)2 the area of the original

triangle. Thus, the area of the green region is

25 81 90 45 270
1- = — ) [ABC]=— -84 = — .84 =|""|
< 196 196>[ Ol= 196 % =558 7




Problem 5

How many solutions for x in the range (0,2020) are there such that
|z)? + 2020{z}? = 2?7

(Here, |z] denotes the largest integer less than or equal to x, while {z} denotes z — |z].)

Solution. Replace = with |z | + {z} on the right side and expand. We are left with

|z]? + 2020{z}? = 2
|z]? +2020{z}? = |z|* + 2|z {z} + {z}?
2019{x}? = 2 x| {=}
{2}(2019{z} — 2 |z]) =0

Thus, either {x} = 0 or 525 |z] = {z}. The former produces solutions of all integers in the range (0, 2020),
of which there are 2019.

We now look at the latter equation. Note that {z} < 1, so [z] < 292, After determining |], the value of

x is uniquely determined as we can determine {«}. There are 1009 possible values of |z], so there are 1009
possible numbers in this case.

The answer is then 2019 + 1009 = | 3028 |.



Problem 6

Let f(x) = ged(2?, 22 + 6) for all positive integers z and let k be the maximum possible value of f(x).
Suppose n is the fifth smallest positive integer such that f(n) = k. Find the ordered pair (k,n).

Solution. Note that
f(z) = ged(z?, 22 +6) < 2-ged(2?, 24+ 3) < 2-ged(x? — (z +3)(z — 3),2 +3) =2 - ged(9, x + 3) < 18,

Equality holds when 9 | 4+ 3 and 2 | 2, which if and only if 2 = 6 (mod 18) by CRT. The fifth smallest
integer satisfying this is 5- 18 — 12 = 78. Thus, k = 18 and n = 78, giving | (18,78) |.



Problem 7
Let AO1 XY be isosceles, with O;1 X = O1Y and ZXO1Y # 90°. Let Oy be the circumcenter of

AO1XY, and let O3 be the circumcenter of AO>,XY. If ZXO1Y = £ZX0O3Y = 6, find the sum of all
possible values of 6 in degrees.

Solution. Suppose ZXO,;Y = q, for some i € {1,2}.
If a < 90°, then ZXO;11Y = 2a.

If @ > 90°, then ZXO;41Y = 360° — 2.

This leaves us with one of four possibilities:

00— 20 — 40 =10

0 — 20 — 360° — 40 =0

0 — 360° — 20 — 720° — 40 =6
0 — 360° — 20 — 46 — 360° = 0

The first case yields # = 0°, which is not valid.

The second case yields 6 = 72°. We can check that our moves are indeed valid: 72° — 144° — 72° are
both valid moves.

The third case yields § = 144°. We can check that our moves are indeed valid: 144° — 72° — 144° are
both valid moves.

The last case yields 8 = 120°. We can check that our moves are indeed valid: 120° — 120° — 120° are
both valid moves.

The answer is 72° + 144° + 120° = .



Problem 8

How many integers between 1 and 1023, inclusive, are there such that when expressed in binary, every
0 is adjacent to another 0, and every 1 is adjacent to another 17 (For example, the binary integer 11002
has this property, but the binary integer 10102 does not.)

Solution. Let a, denote the number of such numbers which have exactly n digits when written in binary.
We seek a1 + as + az + - - + a19. We now compute a recursive formula for a,,.

Note that the first digit must be a 1, so the next digit must also be a 1. Let the first £ > 2 digits be 1. Then
the remaining n — k digits have the same rules as before, except they are required to start with a 0. If we
interchange the roles of 1s and Os, we see that there are a,,_; ways to finish. Thus, we have

Op = Op—2 + ap-3 + -+ az +ai + ao,
where we define ap = 1. Similarly, we have
Ap41 = Gp—1 T ap—2+ -+ a2+ a1+ ap.

Subtracting the two, we obtain
Gn+1 = Gp + Gp—1.

Since agp = 1 and a; = 0, we see that a,, = F},,_1, where F}, is the kth Fibonacci number.
Now

CL1+CL2+"'+G10:algf(ZO:Fll*l:gg*l:.
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Problem 9

Call a positive integer m ridonkulous if for all positive integers n, the set

{5040n,5040n + 1,5040n + 2, ...,5040n + 5040}

contains a multiple of m. How many ridonkulous numbers are there?

It is clear that all positive integers at most 5040 are ridonkulous. We claim that the ridonkulous numbers
that are greater than 5040 are precisely 5040 + d, where d | 5040.

To prove this claim, first we show that these are all ridonkulous. Suppose d | 5040. Let d' = %. Since
d | 5040 + d, we just need 5040 + d to divide an element in the set

{5040n, 5040n + d, 5040n + 2d, . .., 5040n + 5040}.
We can divide everything by d, so we need d’ + 1 to divide a number in the set
{dn,dn+1,dn+2,...,dn+d}.
This is a set of d’ + 1 consecutive positive integers, so d’ + 1 must divide one of them.

We must now prove the converse. Let our number be 5040 + k with & 1 5040. Let d = ged(k,5040) < k. Let
d' =390 and k' = £ > 1. Since d | 5040 + k, we must have 5040 + k dividing a number in the set

{5040n, 5040n + d, 5040n + 2d, . . ., 5040n + 5040}

for all n. We can divide everything by d, so we need d’ + &k’ to divide a number in the set {d'n,d'n+1,d'n+
2,--+,d'n+d'} for all n. Note that ged(d' + k', d") = ged(d', k") = 1 since otherwise we could have increased
d. Thus, we can choose an n such that d'n =1 (mod d’' 4+ k). For this n, since k¥’ > 1, no number in the set
is a multiple of d’ + k’, so 5040 + k isn’t ridonkulous.

Thus, the claim is proven. There are 5040 integers at most 5040, and there are 60 divisors of 5040 = 24.32.5.7,

so the answer is
5040 + 60 =| 5100 |.
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Problem 10
Let a, b, and ¢ be the roots of 2% — 9z — 2020 = 0. Compute

(a® — be)(b? — ca)(c® — ab).

Solution. By Vieta’s, we have abc = 2020. Then our expression reduces to

(a2 - 2020) <b2 - 2020> (CQ - 2020> (a® — 2020) (b3 — 2020)(c® — 2020)

a b c - abc

However, a® — 2020 = 9a, b — 2020 = 9b, and ¢ — 2020 = 9¢. Thus, our expression reduces to

729abc _ .

abe

Remark. (a? — be)(b? — ca)(c? — ab) + (ab + be + ca)® = abe(a + b+ ¢)3

12



Problem 11

In AABC, the midpoints of AB and AC are M and N respectively. Let BN and C'M intersect at G.
If AMGN is cyclic, BC = 6, and ZBAC = 30°, compute (AB + AC)2.

Solution (Reflection Across Midpoint). Note that G is just the centroid of AABC. Let the midpoint of BC
be P. We need ZBGC = 150°, so the reflection of G over P must lie on (ABC'). Then by power of a point,

2 2

% = % =9, where m, is the length of the A-median. Thus, m, = 3V/3.

By Law of Cosines on ZBAC of AABC, we have b* 4+ ¢ — \/3bc = 36. By the median formula, we have

2(b? +¢c%) - 36 _
4 a

or b2 4 ¢? = 72. Then be = 12v/3, so (b + ¢)? = 72 + 24+/3.

G/
Solution (Power of a Point). Notice that the centroid divides a median in a 2 : 1 ratio. This means BG :

GN =2:1and CG: GM = 2:1. By power of a point, BG- BN = BM - BA, which can be rewritten as
BG-3BG = BM -2BM. Similarly, CG -3CG = CM -2CM. Thus, if GN = z, then

BG = 2z,
BM = zV/3,
AM = zV/3.
Similarly, if GM =y, then
CG =2y,
CN =yV/3,
AN = yV/3.

From Law of Cosines on AABC, we see that
62 = 1222 + 12¢% — 122yV/3, or 3 =22 +y?> — zyV/3.
Since Z/BGC = 150° we see that
6% = 4z” + 49° + élaz:y\/g7 or 9=zx?+y>+ a:y\/g

Thus, 22 + y?> = 6 and zy = V3. Now (AB + AC)? = 12(x + y)?, which is simply 12(2% + 2zy + 3?), or

[72+24v3]
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Problem 12
Compute

4 4 4
(a+b+c)! (12—a—b—2c¢)!
2.0 alblel (A —a)l(d—b)(A4— o)

Solution (Combinatorial Interpretation). For a fixed (a,b, c), note that

(a+b+c)!
alblc!

represents the number of paths from (0, 0,0) to (a, b, c), while

(12—a—-b-2c)!
(4—a)l(4-b)!(4 - c)!

represents the number of paths from (a, b, ¢) to (4,4,4). Thus, the product

e a+b+c) (12—a—b—2¢)!
ZZZ alble!  (4—a)l(4—0b)!(4—c)!

a=0 b=0 c¢=0

is the number of paths from (0,0, 0) to (4,4, 4) that pass through (a,b,¢). Then the summation is
4

This is equal to

4

4
12
Z [Number of paths through (a,b,c)] = Z [Number of lattice points on path] = (4 4 4) -13.

b=0 c=0 path

131 13-12-11-10-9-8-7-6-5-4-3-2-1  13-2Z-11-10-9-8-7--5-4-3-72-1
243 2424 - 24 B 242424

— (13-11-7)(10-9 - 5) = 1001 - 450 = [450450 |

Solution (Algebra). Observe that the numerator can alternatively be expressed as

12!
(12—a—-b—-c)lla+b+c) = ——
(a+b+c)
and the denominator can be expressed as
41 41 4l

aldble!l(4d—a)l(4—-0)!(4—-—¢)) = — - — - —.
(=== @

Thus, we can rewrite the fraction in the sum as

(a+btol  (12-a-b-o! _12()()()
alblc! (4—a)(4—-0)4—c) (4!)3((1_:;_6).

We compute the sum by fixing the value of a + b+ ¢. The value of a + b + ¢ ranges from 0 to 12 (since a, b,
and ¢ each range from 0 to 4). The sum becomes

zz”' B>

$=0 a+btc=s ) <a+b+c s=0 a+b+c=s

121(2 4)

Now, we attempt to compute the inner sum using a combinatorial argument.

14



Consider a committee of 12 people, and suppose we choose s people from this committee. This can be
done in (13) ways. On the other hand, we can split up the committee into three groups of 4. We choose a
people from the first group, b people from the second group, and ¢ people from the third group such that
0<a,b,c<4and a+ b+ c=12. This can be done in (4) (%) (4) ways for each choice of (a,b, ¢) satisfying

a C

2 O00-0)

(Alternatively, one can look at the coefficient of #* when (1 + x)*2 = [(1 + 2)*]? is expanded.)

these conditions. This means

Thus,
) & 12t 13l

12 12'4 4
2 2 ééliivzw-w:'

5=0 a+b+c=s s=0

15



Problem 13

In AABC, let AB=5,BC =7, and CA = 8. Let the perpendicular bisector of BC intersect lines AB
and AC at X and Y. Let the circumcircle of AABY be w; and the circumcircle of AACX be ws. Let
wy and wy intersect at a point T' # A. Let the tangents to wy and we at T intersect BC at U and V,
respectively. Compute UV'.

Solution. The main claim is that 7T is the circumcenter of AABC.

B U V C

Note that ZAXC = Z/BXC = 180° — 2/B, so ZATC = 2/B. Similarly, /BT A = 2/C. These two facts
combined show that T is the circumcenter of AABC.

The tangent to wy at T is parallel to AB as AT = BT, and the tangent to wy at T is parallel to AC as
AT = CT. Thus, ATUV ~ AABC'. To find the ratio of similitude, we compute the ratio of the altitudes
from 7" and A in these two triangles. The altitude from A to BC is

2[ABC] 2-4/10-5-3-2  20V3
BC 7 T

Since T is the circumcenter, the altitude from T to UV is Rcos A. By the Law of Cosines we compute cos A
as %, and we have

abc  5-7-8 TV3
[ABC] 403 3’

so the altitude from T to UV has length %5. This means the ratio of similitude is

R:4

TV3/6 49
201/3/7 120
4
Since BC = 7, this means UV = %‘90 7= %2 .
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Problem 14

i k2m
Compute H cos (17) .

k=1

Solution (Powers of 2). First we compute the sign of the expression. It is easy to see that

cos 7 , COS 17 , COS 7 ,COS 7

are the only positive terms, so the expression is positive. We now compute the absolute value of the
expression.
Note that 2 is a quadratic residue mod 17 (by, for example, 36) and ord;7(2) = 8. Thus, the powers of 2 are

the same as the perfect squares mod 17. Thus, we see
8 7
2k 2k

e=(57) -1

k=1

k2w
cos | —

17
We now ignore the absolute value (it turns out to be negative.) Multiplying the expression by sin (%), it
will telescope by the identity sin 260 = 2sin 6 cos . Then it is equal to

k=0

L sin(377) 1
256 sin(Z) 256
th s | L
SO € answer 1S | — |
W 256

Solution (Multiplying by sin). We see similar to the first solution that the answer is positive, so now we can

take some absolute values.
2 2

8 8
k k
Let A= H cos <7r> and B = H sin <W> By the double angle formula, we have
k=1 k=1

17 17
8
1 . (2k*m
|AB\:ﬁk1;[1 sm( 7 )‘

However, note that 2 is a quadratic residue mod 17, so the set of 2k? is equal to the set of quadratic residues
mod 17. Thus, we have

1 1
AB|= =|B| = |A| = —
AB| = 5 |Bl = 4] = 5.

A=|—|
50 256

17



Problem 15

Let S be the set of positive integer divisors of 1000. How many functions f : S — S are there such
that for any z,y € S,

ged((f(2), f(y) = f(ged(z,9))?

Solution. We put the 16 divisors in the grid such that if we give each points coordinates such as the ones in
an (z,y) plane (with the bottom left receiving (0,0)) then (i, j) corresponds to 257. Let f(295%) = 2%ab5¥at
for all 0 < a,b < 3.

(3322, ’y22)

(w02, yo2) |(T12, Y12)

(o1, Y01)|(@11,y11) (%21, Y21)

(37007 yoo) (56107 ylo) (I207 y20)

The condition now becomes

(min{xaba mcd}v min{yab’ ycd}) = (xmin{a,c},min{b,d}v ymin{a,c},min{b,d})

for all 0 < a,b,c,d < 3. It is clear that the x’s and the y’s act independently, so we count the number of
ways to assign the z’s and then square the result.

We need min{ap, Ted} = Tmin{a,c},min{b,d} for all 0 < a,b,c,d < 3. We claim it is enough to determine the
green squares. If we were to determine the green squares, then note that min{xs;, z33} = 23;, so x3; < 233,
and similarly z;3 < x33. Now note

min{z;3, »Ts]'} = Zmin{4,3},min{3,5} = Lij,

so determining the green squares does determine the other squares. We are still left to show that this
configuration does indeed work. This is not too hard to prove (but annoying to write) so it’s left as an
exercise to the reader.

We must have zp3 < x13 < 93 < o33 > x32 > 31 > w30. I 233 = k, then by standard methods (such as
2
stars and bars) there are (Sgk) solutions to one side of the inequality, so there are (3'§k) solutions total.

Then there are ) 9 9 9
o () 1 (2) (%) 214164100+ 400 = 517
3 3 3 3) ~ B

Since we have ignored the y’s thus far, the answer is

SIT* =
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Problem 16

How many ways are there to choose integers x,y, z between 1 and 103, inclusive, such that 22 + y2 +
22 — zyz = 4 (mod 103)?

Solution. Treating the congruence z2 + y? + 22 — zyz — 4 = 0 (mod 103) as a quadratic equation in x, we
can solve it using the quadratic formula:

yzt/(yz)? — 4> — 422 + 16
= 5 ,

If y and z are fixed constants, then we can consider the discriminant A of this quadratic equation. If the
discriminant is a nonzero perfect square (mod 103), then there are two solutions for z (mod 103). If the
discriminant is a multiple of p, then there is exactly 1 solution for z (mod 103). Finally, if the discriminant
is not a perfect square (mod 103), then there are no solutions for 2 (mod 103). For this reason, it’s enough
to find the number of pairs (y,z) (mod 103) such that the discriminant is:

e A nonzero perfect square (mod 103),
e A multiple of 103, or
e Not a perfect square (mod 103).

To do this, we require the Legendre symbol and some algebra. Because 1+ ( 103)
for z (mod 103) for a given pair (y,z) (mod 103), it is enough to compute

103 103 9 9 103 103
y?2? —4y? — 422 + 16 9 Y222 f4y — 422 +16
1 =1
>y (14 (S5 w3y (ME

y=1z=1 y=1z=1

gives the number of solutions

Notice that y?2% — 4y? — 422 + 16 factors as (y*> — 4)(2% — 4), so this sum can be rewritten as
103 103 , o 2 03 0 4\N108 0
103° =103° =
23 (") () =0 2 (M) 2 (i)
103 , o 103 , o
y°—4 z¢—4
=103°
+<Z( 103 )) <Z< 103 ))
y=1 z=1
103 , o 2
y°—4
=103°
(&)

Thus, it remains to compute 210_3 (y2_4). To do this, notice that

y=1 103
103 2 103 103 y2 4

=103 — 103 = 1 — 103.
> ()= () = (0 ()

The sum on the right is the number of solutions to the congruence y? — 4 = w? (mod 103), which we can
rewrite as y? —w? =4 (mod 103). Setting y +w =k and y —w = % where k is nonzero (mod 103), we get

a unique ordered pair (w,y) satisfying this congruence. For each nonzero k, it is possible to get a unique
103 2

—4
ordered pair (w,y) in this manner. Thus, the sum on the right is 102, implying that Z ( 103 > = -1,

giving a final answer of 1032 + 1 =| 10610 |.

Solution (Epic substitution). Let p = 103. We will first prove a lemma.

19



Lemma. The equation 2% + y? + 22 — xyz = 4 holds if and only if x = a + %,y =b+ %7 and z = c+ % for
some a,b,c € Fp2 such that abc = 1.

Proof. First, assuming that abc = 1, we can simplify

s 9 1\° 1\° 1\° 1 1 1
+y +z2—axyz=(a+-) +|b++ | + c+f —la+—=)(b+=)|c+~
a b a b
1 1 b b b
=4+ (@)t (St g C+ac+a e
a c bc  ac ab

1 1 abc abc  abc a® b? c?
—4 24 p2 2 T T i I T H
+a JrC)+(a2 2) ( b2 * c2> <abc+abc+abc>

:4:7

o

because abc = 1. To prove the converse, suppose r = r + % and y = s+ % Through the quadratic formula,
we can solve for z as

(+3) -1 (-b)

- 2

oyt @D — D)
2

SO eitherz—rs—i——s or z = g—&—f Ifz—rs—!—i, then we can take a = r,b = s, and ¢ = Tls’ while if
z =%+ 2 we can take a = 7,b = 7, and ¢ = 2. This proves the lemma. O

Using this lemma, we can assume that = a + 1,y =b+ i, and z = c+ ¢ L where abe = 1. Since z,y,z € IFp,
we first find the number of triples (a,b, ¢) with a,b,c € F2 such that abc =1anda —|— Lo+ 4 ande+ 1
are all in F,. To do this, observe that the equation z = ¢+ > only has solutions a and % = for t. On the other
hand, raising the equation x = a+ é to the p'* power gives x” =aP+ a%, Because 2P = x by Fermat’s Little
Theorem, we see that aP is a solution to the equation x =t + % as well. In other words, either a? = a or
aPl = % Through similar reasoning for y and z, we arrive at the conditions

a’tt =1 or o’ =1,
i =1 or Pt =1,
P =1 or P 1 =1,

abc = 1.

Lemma. One of the two equations aPt! = bPtL = Pt =1 or P~ = pP~1 = P~ = 1 must hold.

Proof. Without loss of generality, we may assume that a* = b* = 1, for some k € {p—1,p+1}. Since c = ﬁ,

we see that ¢F = aklbk =1, as desired. O]

We now split the counting solutions into two cases, depending on the value of k € {p—1,p+1}. It is enough
to choose a and b, because ¢ = ﬁ. If k= p— 1, then there are (p — 1)? ways to choose a and b because the
polynomial P~ —1 has exactly p—1 roots in F,,. Similarly, if K = p+1, then there are (p+1)? ways to choose
a and b because the polynomial t**! —1 has exactly p+1 roots in Fp2. In total, this gives (p—1)*+ (p+1)* =
2p? +2 ways to choose a working triple (a, b, ¢). However, observe that if (a, b, c) gives a valid triple (z,y, 2),
then so does (%, %, %)' Furthermore, the triples (1,1,1), (1,—1,—1),(—=1,1,—-1), (=1, —1, 1) were also counted

twice because they satisfy both aPt! = pP*t! = ¢P*1 =1 and a?~! = bP~! = P~ = 1. Thus, every triple
(7,9, z) was counted exactly twice, so we divide by 2 to get p> +1 =|10610 |
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