v_{p} and LTE

Mario Tutuncu-Macias

November 2020

1 Definitions

For a prime number p, let $v_{p}(n)$ be defined as the largest integer k such that $p^{k} \mid n$.
Definition check (please you haven't forgotten): Calculate the following:

- $v_{2}(49620)$
- $v_{3}(49620)$
- $v_{7}\left(50^{7}-1\right)$

In general if n is easy to write out entirely (like less than 8 digits) then to compute $v_{p}(n)$, dividing is a pretty good strategy. However, for the last bullet point, the question would have been pretty annoying to solve with just division.

2 First theorems

Show that

- $v_{p}(m n)=v_{p}(m)+v_{p}(n)$
- $v_{p}(m+n) \geq \min \left(v_{p}(m), v_{p}(n)\right)$

Suppose $v_{p}(a)=m$ and Suppose $v_{p}(b)=n$. What is

- $v_{p}(\operatorname{gcd}(a, b))$
- $v_{p}(\operatorname{lcm}(a, b))$

Use this to show that $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b$
Harder problem: Show if $a\left|b^{2}\right| a^{3} \mid b^{4} \ldots$ then $a=b$

3 Lifting the Exponent

- For odd p, and x, y such that $p \mid(x-y) v_{p}\left(x^{n}-y^{n}\right)=v_{p}(x-y)+v_{p}(n)$
- For odd p, and n odd, $v_{p}\left(x^{n}+y^{n}\right)=v_{p}(x+y)+v_{p}(n)$
- For $p=2$, and x, y such that $2 \mid(x-y), v_{2}\left(x^{n}-y^{n}\right)=v_{2}(x-y)+v_{2}(x+y)+v_{2}(n)-1$

Proofs in class

4 Problems

1. Let n be the least positive integer for which $149^{n}-2^{n}$ is divisible by $3^{3} \cdot 5^{5} \cdot 7^{7}$. Find the number of positive integer divisors of n.
2. For a given k, find all n such that 5^{k} divides $2^{n}-1$
3. $a^{a-1}-1$ is never squarefree for $a>2$
4. (ISL 1991) Find the largest k such that $1991^{k} \mid 1990^{1991^{1992}}+1992^{1991^{1990}}$
