v_p and LTE

Mario Tutuncu-Macias

November 2020

1 Definitions

For a prime number p, let $v_p(n)$ be defined as the largest integer k such that $p^k|n$. Definition check (please you haven't forgotten): Calculate the following:

- $v_2(49620)$
- $v_3(49620)$
- $v_7(50^7 1)$

In general if n is easy to write out entirely (like less than 8 digits) then to compute $v_p(n)$, dividing is a pretty good strategy. However, for the last bullet point, the question would have been pretty annoying to solve with just division.

2 First theorems

Show that

- $v_p(mn) = v_p(m) + v_p(n)$
- $v_p(m+n) \ge \min(v_p(m), v_p(n))$

Suppose $v_p(a) = m$ and Suppose $v_p(b) = n$. What is

- $v_p(\gcd(a,b))$
- $v_p(\operatorname{lcm}(a, b))$

Use this to show that gcd(a, b) lcm(a, b) = ab

Harder problem: Show if $a|b^2|a^3|b^4...$ then a = b

3 Lifting the Exponent

- For odd p, and x, y such that $p|(x y) v_p(x^n y^n) = v_p(x y) + v_p(n)$
- For odd p, and n odd, $v_p(x^n + y^n) = v_p(x + y) + v_p(n)$
- For p = 2, and x, y such that $2|(x y), v_2(x^n y^n) = v_2(x y) + v_2(x + y) + v_2(n) 1$

Proofs in class

4 Problems

- 1. Let n be the least positive integer for which $149^n 2^n$ is divisible by $3^3 \cdot 5^5 \cdot 7^7$. Find the number of positive integer divisors of n.
- 2. For a given k, find all n such that 5^k divides $2^n 1$
- 3. $a^{a-1} 1$ is never squarefree for a > 2
- 4. (ISL 1991) Find the largest k such that $1991^k | 1990^{1991^{1992}} + 1992^{1991^{1990}}$