

Abstract

1. There is a positive integer with the property that adding 3 to this number, taking the square root of the result, adding 3 again, then dividing the result by 3 yields a grand total of 3 . Find this positive integer.

2. What is the maximum number of 1×2 dominoes one can place on a 5×6 grid such that a connected loop can be drawn through the remaining squares, if no two dominoes overlap or occupy adjacent squares? (The dotted loop may only move horizontally or vertically, not diagonally.)
3. Let $f(x)=a x^{2}+b x+c$ be a quadratic with positive integer coefficients. If $f(1)=21$ and $f(10)=201$, then what is $f(100)$?
4. Let $\triangle A B C$ be an isosceles triangle with $A B=B C$ and $m \angle A B C=100^{\circ}$. A point D is selected outside of $\triangle A B C$ such that $\angle D C A$ is a right angle and $D C=B C$. Compute $m \angle D B C$ in degrees.
5. For how many positive integers b does the base b expansion of π start out as $3.1 \ldots$? (Note $b=10$ works, since in base 10 we have $\pi=3.14159 \ldots$..)
6. Let us say that a decade is primeval if it contains four prime numbers. For instance, the decade from 1480 to 1490 was primeval, since 1481, 1483, 1487 and 1489 are all primes. Let p_{1}, p_{2}, p_{3} and p_{4} be the primes (in order) in the next primeval decade after 2020. Compute the value of $p_{2} p_{3}-p_{1} p_{4}$.
7. A certain collection of numbered index cards includes one card with a 1 written on it, two cards with a 2 , and so forth up to n cards showing an n, for some positive integer n. Determine n, if it is the case that drawing a card at random from this collection results in a value of 2017, on average.
(c) Proof School 2017
