Order and Quadratic Reciprocity

Rishabh Das
New York City Math Team

1 Euler's Theorem

Definition (Euler's Totient Function)

Let $\varphi(n)$ denote the number of elements of $\{1,2, \ldots, n\}$ that are relatively prime to n.

Lemma (Computing $\varphi(n)$)

If $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ is the prime factorization of n, then

$$
\varphi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)=p_{1}^{a_{1}-1} p_{2}^{a_{2}-1} \cdots p_{k}^{a_{k}-1}\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right)
$$

This lemma will not be proven here, but can be proven using the Chinese Remainder Theorem and proving $\varphi\left(p^{l}\right)=p^{l-1}(p-1)$, where p is a prime.

Theorem 1 (Euler's Theorem)
If $\operatorname{gcd}(a, n)=1$, then

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

Proof. Let $\left\{n_{1}, n_{2}, \ldots, n_{\varphi(n)}\right\}$ be the set of positive integers less than or equal to n that are relatively prime to n. Note that $a n_{i}$ is relatively prime to n. Also note that if $a n_{i} \equiv a n_{j}(\bmod n)$:

$$
a n_{i} \equiv a n_{j} \quad(\bmod n) \Longrightarrow a\left(n_{i}-n_{j}\right) \equiv 0 \quad(\bmod n)
$$

Since $\operatorname{gcd}(a, n)=1$, we must have $n_{i}-n_{j} \equiv 0(\bmod n)$. Since $1 \leq n_{i}, n_{j} \leq n$, this implies $n_{i}=n_{j}$, or $i=j$. Thus, $\left\{n_{1}, n_{2}, \ldots n_{\varphi(n)}\right\} \equiv\left\{a n_{1}, a n_{2}, \ldots a n_{\varphi(n)}\right\}(\bmod n)$. Multiplying all the elements of these two sets together, we can see:

$$
\left(n_{1} n_{2} \cdots n_{\varphi(n)}\right) \equiv a^{\varphi(n)}\left(n_{1} n_{2} \cdots n_{\varphi(n)}\right) \quad(\bmod n)
$$

Since $n_{1} n_{2} \cdots n_{\varphi(n)}$ is relatively prime to $n, a^{\varphi(n)} \equiv 1(\bmod n)$.

Corollary (Fermat's Little Theorem)

If p is a prime and $p \nmid a, a^{p-1} \equiv 1(\bmod p)$.

This follows since $\varphi(p)=p-1$ for prime p.

Exercises

Exercise 1. Find the last two digits of 17^{83}
Exercise 2. Find the last two digits of 227^{227}
Exercise 3. Find the last two digits of 38^{2019}

2 Order

Definition (Order)

If $\operatorname{gcd}(a, n)=1$, we denote the smallest positive integer d such that $a^{d} \equiv 1(\bmod n)$ be $d=\operatorname{ord}_{n}(a)$.

Note that by Euler's Theorem, $\operatorname{ord}_{n}(a)$ will exist.

Theorem 2 (Fundamental Theorem of Order)
If $\operatorname{gcd}(a, n)=1$ and $a^{k} \equiv 1(\bmod n)$, then $\operatorname{ord}_{n}(a) \mid k$.

Proof. Let $d=\operatorname{ord}_{n}(a)$. By the division algorithm, we can write $k=q d+r$ where $0 \leq r<d$. Then we have:

$$
a^{q d+r}=a^{q d} a^{r} \equiv 1 \quad(\bmod n)
$$

However, by the definition of d, we have $a^{d} \equiv 1(\bmod n)$, so $a^{q d} \equiv 1(\bmod n)$. Thus, we have $a^{r} \equiv 1$ $(\bmod n)$.
If r is a positive integer, since $r<d$, we get a contradiction of the minimality of d. Thus, $r=0$ and $d \mid k$.

Corollary

$\operatorname{ord}_{n}(a) \mid \varphi(n)$ by Euler's Theorem and the fundamental theorem of order.

This corollary is very powerful. To show its strength, we will use an example.
Example. Find $\operatorname{ord}_{23}(5)$
By Euler's theorem, the answer must be at most $\varphi(23)=22$. However, without our corollary, we would have to check every single number between 1 and 21 , inclusive. If we use our corollary, we can immediately find that the answer must be a divisor of 22 , so it is one of $\{1,2,11,22\}$. We can immediately see that it is not 1 or 2 . Thus, we are left to check 11 , since we already know 22 will work by Euler's Theorem.
To check if 11 works or not, we notice that $5^{2} \equiv 2(\bmod 23)$. Thus:

$$
5^{11} \equiv 2^{5} \cdot 5 \equiv 32 \cdot 5 \equiv 9 \cdot 5 \equiv-1 \quad(\bmod 23)
$$

Since 11 does not work, $\operatorname{ord}_{23}(5)=22$.
If $\operatorname{ord}_{n}(a)=\varphi(n)$, we call a a primitive root modulo n. Since $\operatorname{ord}_{23}(5)=\varphi(23), 5$ is a primitive root modulo 23. While it will not be proven here, there exists a primitive root modulo any prime number. (In fact, there exists a primitive root with modulo n if and only if n is of the form $1,2,4, p^{k}, 2 p^{k}$ for an odd prime p.)

Exercises

Exercise 1. Compute $\operatorname{ord}_{13}(3)$
Exercise 2. Compute $\operatorname{ord}_{17}(3)$
Exercise 3. If $\operatorname{ord}_{n}(a) \mid n-1$ for all a such that $\operatorname{gcd}(a, n)=1$, must n be prime?

3 Problems

Problem 1. (a) Show that if p is an odd prime such that $p \mid x^{2}+1$, then $p \equiv 1(\bmod 4)$
(b) Show that if $p \equiv 3(\bmod 4)$ and $p \mid x^{2}+y^{2}$, then $p \mid x$ and $p \mid y$.

Problem 2. (2019 AIME $1 \# 14$) Find the least odd prime factor of $2019^{8}+1$.
Problem 3. Let $F_{n}=2^{2^{n}}+1$ be the nth Fermat number. Show that if p is a prime such that $p \mid F_{n}$, then $p \equiv 1\left(\bmod 2^{n+1}\right)$

Problem 4. Prove that if n is not of the form $1,2,4, p^{k}$, or $2 p^{k}$ for odd primes p then there does not exist a primitive root modulo n.

Problem 5. Show that for any prime $p \neq 2,5$, the period of the decimal representation of $\frac{1}{p}$ is $\operatorname{ord}_{p}(10)$.
Problem 6. Find all n such that $n \mid 2^{n}-1$. (Hint: Suppose $n>1$, and let p be the smallest prime divisor of n. What can we say about p ?)

Problem 7. (a) If p, q are primes such that $q \mid 1+x+x^{2}+\cdots+x^{p-1}$, then $q=p$ or $q \equiv 1(\bmod p)$.
(b) (IMO Shortlist 2006) Find all integer solutions of the equation $\frac{x^{7}-1}{x-1}=y^{5}-1$

4 Legendre Symbol and Quadratic Reciprocity

Let p be an odd prime. We say a number a is a quadratic residue $\bmod p$ if and only if there exists an integer x such that $x^{2} \equiv a(\bmod p)$.

Theorem 3

There are exactly $\frac{p+1}{2}$ quadratic residues in the range $\{0,1,2, \ldots, p-1\}$.

Proof. We will first deal with nonzero quadratic residues.
Let $a \not \equiv b(\bmod p)$. Then if $a^{2} \equiv b^{2}(\bmod p)$:

$$
\begin{gathered}
a^{2}-b^{2} \equiv 0 \quad(\bmod p) \\
(a+b)(a-b) \equiv 0 \quad(\bmod p) \\
a+b \equiv 0 \quad(\bmod p) \\
a \equiv-b \quad(\bmod p)
\end{gathered}
$$

Thus, we pair $(1, p-1),(2, p-2), \ldots,\left(\frac{p-1}{2}, \frac{p+1}{2}\right)$. When each of these residues are squared, two squares will be the same if and only if they are in the same pair. Thus, this is $\frac{p-1}{2}$ quadratic residues. 0 gives $\frac{p+1}{2}$.

Definition (Legendre Symbol)
For any odd prime p, define

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{l}
0 \text { if } p \mid a \\
1 \text { if } a \text { is a quadratic residue } \bmod p \\
-1 \text { otherwise }
\end{array}\right.
$$

Corollary

There are exactly $\left(\frac{a}{p}\right)+1$ solutions to $x^{2} \equiv a(\bmod p)$

Theorem 4 (Euler's Criterion)

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod p)
$$

Proof. If $p \mid a$ the proof is easy. If $\left(\frac{a}{p}\right)=1$, then write $x^{2} \equiv a(\bmod p)$. Then $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1(\bmod p)$ by Fermat
Assume $\left(\frac{a}{p}\right)=-1$. It is clear that $\left\{a \cdot 1^{2}, a \cdot 2^{2}, \ldots, a \cdot\left(\frac{p-1}{2}\right)^{2}\right\}$ is a set of all non-quadratic residues, because from the proof of theorem 4.1, $\left\{1^{2}, 2^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}\right\}$ forms a set of all nonzero quadratic residues. Thus:

$$
(p-1)!\equiv \prod_{r=1}^{\frac{p-1}{2}}\left(r^{2}\right)\left(a r^{2}\right) \equiv a^{\frac{p-1}{2}} \prod_{r=1}^{\frac{p-1}{2}}(r(p-r))^{2} \equiv a^{\frac{p-1}{2}}[(p-1)!]^{2}
$$

By Wilson's Theorem, $a^{\frac{p-1}{2}} \equiv-1 \equiv\left(\frac{a}{p}\right)(\bmod p)$
This theorem is extremely useful. It absolutely trivializes the following useful result.

Theorem 5 (Multiplicative Property of Legendre Symbol)
$\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$

Proof.

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{\frac{p-1}{2}} \equiv a^{\frac{p-1}{2}} b^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \quad(\bmod p),
$$

so $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.
We now will present Gauss's Lemma.

Lemma (Gauss's Lemma)

Let p be an odd prime and a be an integer relatively prime to p. Consider the set

$$
S_{p}=\left\{a, 2 a, 3 a \ldots, \frac{p-1}{2} \cdot a\right\} .
$$

After reducing each element in this set mod p (such that each element is an integer between 0 and $p-1$ inclusive), let the number of elements that are larger than $\frac{p}{2}$ be n. Then $\left(\frac{a}{p}\right)=(-1)^{n}$.

Proof. First of all, note that there are $\frac{p-1}{2}$ elements of S_{p}, meaning that they are all distinct mod p. Then let $b_{1}, b_{2}, \ldots, b_{m}$ be the elements of S_{p} that are less than $\frac{p}{2}$, and $c_{1}, c_{2}, \ldots, c_{n}$ bet the elements of S_{p} that are greater than $\frac{p}{2}$. Note that $m+n=\frac{p-1}{2}$.

Consider the numbers $0<b_{1}, b_{2}, \ldots, b_{m}, p-c_{1}, p-c_{2}, \ldots, p-c_{n}<\frac{p}{2}$. I claim all $\frac{p-1}{2}$ of these numbers are distinct. Note that $b_{i} \neq b_{j}$ and $c_{i} \neq c_{j}$ for $i \neq j$. Assume that $b_{i}=p-c_{j}$ for some i, j. Then:

$$
b_{i}+c_{j} \equiv s a+t a \equiv 0 \quad(\bmod p)
$$

for some $0<s, t \leq \frac{p-1}{2}$. Since a is relatively prime to p, we have $p \mid s+t$. However, the range condition on $s+t$ gives a contradiction.
Thus, $\left\{b_{1}, b_{2}, \ldots, b_{m}, p-c_{1}, p-c_{2}, \ldots, p-c_{n}\right\}=\left\{1,2, \ldots, \frac{p-1}{2}\right\}$. Now we compute:

$$
a(2 a)(3 a) \cdots\left(\frac{p-1}{2}\right) a=a^{\frac{p-1}{2}}\left(\frac{p-1}{2}\right)!\equiv(-1)^{n} b_{1} b_{2} \cdots b_{m} c_{1} c_{2} \cdots c_{n} \equiv(-1)^{n}\left(\frac{p-1}{2}\right)!\quad(\bmod p)
$$

and thus $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \equiv(-1)^{n}(\bmod p)$, and the proof is complete.
Now we present Eisenstein's Lemma.

Lemma (Eisenstein's Lemma)

Let p be an odd prime and let a be an odd integer relatively prime to p. If we define $\alpha(a, p)=\sum_{k=1}^{\frac{p-1}{2}}\left\lfloor\frac{k a}{p}\right\rfloor$, then $\left(\frac{a}{p}\right)=(-1)^{\alpha(a, p)}$.

Proof. We use the same notation presented in the proof of Gauss's Lemma.
Note that $k a=p \cdot\left\lfloor\frac{k a}{p}\right\rfloor+r$ where r is the remainder when $k a$ is divided by p. Then:

$$
\sum_{k=1}^{\frac{p-1}{2}} k a=p \sum_{k=0}^{\frac{p-1}{2}}\left\lfloor\frac{k a}{p}\right\rfloor+\sum_{i=1}^{m} b_{i}+\sum_{j=1}^{n} c_{j}
$$

Also check that

$$
\sum_{k=1}^{\frac{p-1}{2}} k=\sum_{i=1}^{m} b_{i}+p n-\sum_{j=1}^{n} c_{j}
$$

Subtracting these two statements gives

$$
(a-1) \sum_{k=1}^{\frac{p-1}{2}} k=p \cdot \alpha(a, p)+2 \sum_{j=1}^{n} c_{j}-p n
$$

Since a is odd, taking this $\bmod 2$ gives $\alpha(a, p) \equiv n(\bmod 2)$, and thus we are done from Gauss's lemma.
The Quadratic Reciprocity Law will be stated here, and its proof will be outlined as an exercise.

Theorem 6 (Quadratic Reciprocity Law)

For all odd primes $p \neq q$, we have $\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$

Since the legendre symbol is multiplicative, we are able to compute nearly any legendre symbol with this tool. We still must prove what $\left(\frac{2}{p}\right)$ is, which will also be an exercise.

Exercises

Exercise 1. (a) How many lattice points are strictly inside the rectangle with vertices at $(0,0),\left(\frac{p}{2}, 0\right),\left(\frac{p}{2}, \frac{q}{2}\right)$ and $\left(0, \frac{q}{2}\right)$?
(b) How many lattice points inside this rectangle lie on the diagonal emerging from $(0,0)$? How many below? Above?
(c) Deduce the Quadratic Reciprocity Law.

Exercise 2. Find a closed form for $\left(\frac{-1}{p}\right)$.
Exercise 3. Find a closed form for $\left(\frac{2}{p}\right)$. (Hint: Gauss's Lemma! Consider the primes mod 8.)
Exercise 4. For which odd primes p is the sum of the distinct quadratic residues a multiple of p ?
Exercise 5. Compute $\left(\frac{6}{673}\right)$.
Exercise 6. Compute $\left(\frac{30}{61}\right)$.
Exercise 7. Look back to when we computed $\operatorname{ord}_{23}(5)$. We had to manually check if it was 11 or not. Is there a way to see if $5^{11} \equiv 1(\bmod 23)$ or not without doing this?

5 More Problems

The following problems may use order, Legendre symbols, or both. Have fun!
Problem 1. Evaluate $\left(\frac{1 \cdot 2}{p}\right)+\left(\frac{2 \cdot 3}{p}\right)+\cdots+\left(\frac{(p-2) \cdot(p-1)}{p}\right)$.
Problem 2. Find, with proof, the number of x for which $1997 \in\{-1997,-1996, \ldots, 1996,1997\}$ and 1997| $x^{2}+(x+1)^{2}$.

Problem 3. Prove that 2 is a primitive root $\bmod 5^{n}$.
Problem 4. Let $F_{n}=2^{2^{n}}+1$ be the nth Fermat number. Show that if $n \geq 2$ and p is a prime such that $p \mid F_{n}$, then $p \equiv 1\left(\bmod 2^{n+2}\right)$.

Problem 5. Show that for $0<n<p-1, p \mid 1^{n}+2^{n}+\cdots+(p-1)^{n}$.
Problem 6. Find the smallest prime factor of $12^{2^{15}}+1$.
Problem 7. (Vietnam TST 2004) Show that any number of the form $2^{n}+1$ has no prime factors of the form $8 k-1$.

Problem 8. Show that when you write $2^{3^{n}}+1$ as the product of as many primes as possible, at least $2 n$ of them are $3(\bmod 8)$.

Problem 9. (Taiwan 1997) Show that the nth Fermat number, F_{n}, is a prime number if and only if $F_{n} \left\lvert\, 3^{\frac{F_{n}-1}{2}}+1\right.$.

Problem 10. (USA TST 2008) Can $n^{7}+7$ be a perfect square?

