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1 Euler’s Theorem

Definition (Euler’s Totient Function)

Let ϕ(n) denote the number of elements of {1, 2, . . . , n} that are relatively prime to n.

Lemma (Computing ϕ(n))

If n = pa11 p
a2
2 · · · p

ak
k is the prime factorization of n, then

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
= pa1−1

1 pa2−1
2 · · · pak−1

k (p1 − 1)(p2 − 1) · · · (pk − 1)

This lemma will not be proven here, but can be proven using the Chinese Remainder Theorem and proving

ϕ(pl) = pl−1(p− 1), where p is a prime.

Theorem 1 (Euler’s Theorem)

If gcd(a, n) = 1, then

aϕ(n) ≡ 1 (mod n)

Proof. Let {n1, n2, . . . , nϕ(n)} be the set of positive integers less than or equal to n that are relatively prime

to n. Note that ani is relatively prime to n. Also note that if ani ≡ anj (mod n):

ani ≡ anj (mod n) =⇒ a(ni − nj) ≡ 0 (mod n).

Since gcd(a, n) = 1, we must have ni − nj ≡ 0 (mod n). Since 1 ≤ ni, nj ≤ n, this implies ni = nj , or

i = j. Thus, {n1, n2, . . . nϕ(n)} ≡ {an1, an2, . . . anϕ(n)} (mod n). Multiplying all the elements of these two

sets together, we can see:

(n1n2 · · ·nϕ(n)) ≡ aϕ(n)(n1n2 · · ·nϕ(n)) (mod n).

Since n1n2 · · ·nϕ(n) is relatively prime to n, aϕ(n) ≡ 1 (mod n).

Corollary (Fermat’s Little Theorem)

If p is a prime and p - a, ap−1 ≡ 1 (mod p).

This follows since ϕ(p) = p− 1 for prime p.
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Exercises
Exercise 1. Find the last two digits of 1783

Exercise 2. Find the last two digits of 227227

Exercise 3. Find the last two digits of 382019

2 Order

Definition (Order)

If gcd(a, n) = 1, we denote the smallest positive integer d such that ad ≡ 1 (mod n) be d = ordn(a).

Note that by Euler’s Theorem, ordn(a) will exist.

Theorem 2 (Fundamental Theorem of Order)

If gcd(a, n) = 1 and ak ≡ 1 (mod n), then ordn(a) | k.

Proof. Let d = ordn(a). By the division algorithm, we can write k = qd+ r where 0 ≤ r < d. Then we have:

aqd+r = aqdar ≡ 1 (mod n).

However, by the definition of d, we have ad ≡ 1 (mod n), so aqd ≡ 1 (mod n). Thus, we have ar ≡ 1

(mod n).

If r is a positive integer, since r < d, we get a contradiction of the minimality of d. Thus, r = 0 and d | k.

Corollary

ordn(a) | ϕ(n) by Euler’s Theorem and the fundamental theorem of order.

This corollary is very powerful. To show its strength, we will use an example.

Example. Find ord23(5)

By Euler’s theorem, the answer must be at most ϕ(23) = 22. However, without our corollary, we would have

to check every single number between 1 and 21, inclusive. If we use our corollary, we can immediately find

that the answer must be a divisor of 22, so it is one of {1, 2, 11, 22}. We can immediately see that it is not

1 or 2. Thus, we are left to check 11, since we already know 22 will work by Euler’s Theorem.

To check if 11 works or not, we notice that 52 ≡ 2 (mod 23). Thus:

511 ≡ 25 · 5 ≡ 32 · 5 ≡ 9 · 5 ≡ −1 (mod 23).

Since 11 does not work, ord23(5) = 22.

If ordn(a) = ϕ(n), we call a a primitive root modulo n. Since ord23(5) = ϕ(23), 5 is a primitive root modulo

23. While it will not be proven here, there exists a primitive root modulo any prime number. (In fact, there

exists a primitive root with modulo n if and only if n is of the form 1, 2, 4, pk, 2pk for an odd prime p.)

Exercises
Exercise 1. Compute ord13(3)

Exercise 2. Compute ord17(3)

Exercise 3. If ordn(a) | n− 1 for all a such that gcd(a, n) = 1, must n be prime?

2



Order and Quadratic Reciprocity Rishabh Das

3 Problems
Problem 1. (a) Show that if p is an odd prime such that p | x2 + 1, then p ≡ 1 (mod 4)

(b) Show that if p ≡ 3 (mod 4) and p | x2 + y2, then p | x and p | y.

Problem 2. (2019 AIME 1 #14) Find the least odd prime factor of 20198 + 1.

Problem 3. Let Fn = 22
n

+ 1 be the nth Fermat number. Show that if p is a prime such that p | Fn, then

p ≡ 1 (mod 2n+1)

Problem 4. Prove that if n is not of the form 1, 2, 4, pk, or 2pk for odd primes p then there does not exist

a primitive root modulo n.

Problem 5. Show that for any prime p 6= 2, 5, the period of the decimal representation of 1
p is ordp(10).

Problem 6. Find all n such that n | 2n − 1. (Hint: Suppose n > 1, and let p be the smallest prime divisor

of n. What can we say about p?)

Problem 7. (a) If p, q are primes such that q | 1 + x+ x2 + · · ·+ xp−1, then q = p or q ≡ 1 (mod p).

(b) (IMO Shortlist 2006) Find all integer solutions of the equation
x7 − 1

x− 1
= y5 − 1

4 Legendre Symbol and Quadratic Reciprocity
Let p be an odd prime. We say a number a is a quadratic residue mod p if and only if there exists an integer

x such that x2 ≡ a (mod p).

Theorem 3

There are exactly p+1
2 quadratic residues in the range {0, 1, 2, . . . , p− 1}.

Proof. We will first deal with nonzero quadratic residues.

Let a 6≡ b (mod p). Then if a2 ≡ b2 (mod p):

a2 − b2 ≡ 0 (mod p)

(a+ b)(a− b) ≡ 0 (mod p)

a+ b ≡ 0 (mod p)

a ≡ −b (mod p)

Thus, we pair (1, p− 1), (2, p− 2), . . . ,
(
p−1
2 , p+1

2

)
. When each of these residues are squared, two squares will

be the same if and only if they are in the same pair. Thus, this is p−1
2 quadratic residues. 0 gives p+1

2 .

Definition (Legendre Symbol)

For any odd prime p, define

(
a

p

)
=


0 if p|a
1 if a is a quadratic residue mod p

−1 otherwise
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Corollary

There are exactly

(
a

p

)
+ 1 solutions to x2 ≡ a (mod p)

Theorem 4 (Euler’s Criterion)(
a

p

)
≡ a

p−1
2 (mod p)

Proof. If p|a the proof is easy. If

(
a

p

)
= 1, then write x2 ≡ a (mod p). Then a

p−1
2 ≡ xp−1 ≡ 1 (mod p) by

Fermat.

Assume

(
a

p

)
= −1. It is clear that

{
a · 12, a · 22, . . . , a ·

(
p−1
2

)2}
is a set of all non-quadratic residues,

because from the proof of theorem 4.1,
{

12, 22, . . . ,
(
p−1
2

)2}
forms a set of all nonzero quadratic residues.

Thus:

(p− 1)! ≡

p−1
2∏

r=1

(r2)(ar2) ≡ a
p−1
2

p−1
2∏

r=1

(r(p− r))2 ≡ a
p−1
2 [(p− 1)!]2

By Wilson’s Theorem, a
p−1
2 ≡ −1 ≡

(
a

p

)
(mod p)

This theorem is extremely useful. It absolutely trivializes the following useful result.

Theorem 5 (Multiplicative Property of Legendre Symbol)(
ab

p

)
=

(
a

p

)(
b

p

)

Proof. (
ab

p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p),

so

(
ab

p

)
=

(
a

p

)(
b

p

)
.

We now will present Gauss’s Lemma.

Lemma (Gauss’s Lemma)

Let p be an odd prime and a be an integer relatively prime to p. Consider the set

Sp =

{
a, 2a, 3a . . . ,

p− 1

2
· a
}
.

After reducing each element in this set mod p (such that each element is an integer between 0 and p−1

inclusive), let the number of elements that are larger than p
2 be n. Then

(
a

p

)
= (−1)n.

Proof. First of all, note that there are p−1
2 elements of Sp, meaning that they are all distinct mod p. Then

let b1, b2, . . . , bm be the elements of Sp that are less than p
2 , and c1, c2, . . . , cn bet the elements of Sp that are

greater than p
2 . Note that m+ n = p−1

2 .
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Consider the numbers 0 < b1, b2, . . . , bm, p− c1, p− c2, . . . , p− cn < p
2 . I claim all p−1

2 of these numbers are

distinct. Note that bi 6= bj and ci 6= cj for i 6= j. Assume that bi = p− cj for some i, j. Then:

bi + cj ≡ sa+ ta ≡ 0 (mod p)

for some 0 < s, t ≤ p−1
2 . Since a is relatively prime to p, we have p | s+ t. However, the range condition on

s+ t gives a contradiction.

Thus, {b1, b2, . . . , bm, p− c1, p− c2, . . . , p− cn} = {1, 2, . . . , p−1
2 }. Now we compute:

a(2a)(3a) · · ·
(
p− 1

2

)
a = a

p−1
2

(
p− 1

2

)
! ≡ (−1)nb1b2 · · · bmc1c2 · · · cn ≡ (−1)n

(
p− 1

2

)
! (mod p)

and thus

(
a

p

)
≡ a

p−1
2 ≡ (−1)n (mod p), and the proof is complete.

Now we present Eisenstein’s Lemma.

Lemma (Eisenstein’s Lemma)

Let p be an odd prime and let a be an odd integer relatively prime to p. If we define α(a, p) =

p−1
2∑

k=1

⌊
ka

p

⌋
,

then

(
a

p

)
= (−1)α(a,p).

Proof. We use the same notation presented in the proof of Gauss’s Lemma.

Note that ka = p ·
⌊
ka
p

⌋
+ r where r is the remainder when ka is divided by p. Then:

p−1
2∑

k=1

ka = p

p−1
2∑

k=0

⌊
ka

p

⌋
+

m∑
i=1

bi +

n∑
j=1

cj

Also check that
p−1
2∑

k=1

k =

m∑
i=1

bi + pn−
n∑
j=1

cj

Subtracting these two statements gives

(a− 1)

p−1
2∑

k=1

k = p · α(a, p) + 2

n∑
j=1

cj − pn

Since a is odd, taking this mod 2 gives α(a, p) ≡ n (mod 2), and thus we are done from Gauss’s lemma.

The Quadratic Reciprocity Law will be stated here, and its proof will be outlined as an exercise.

Theorem 6 (Quadratic Reciprocity Law)

For all odd primes p 6= q, we have

(
p

q

)
·
(
q

p

)
= (−1)

p−1
2 · q−1

2

Since the legendre symbol is multiplicative, we are able to compute nearly any legendre symbol with this

tool. We still must prove what

(
2

p

)
is, which will also be an exercise.
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Exercises
Exercise 1. (a) How many lattice points are strictly inside the rectangle with vertices at (0, 0), (p2 , 0), (p2 ,

q
2 )

and (0, q2 )?

(b) How many lattice points inside this rectangle lie on the diagonal emerging from (0, 0)? How many below?

Above?

(c) Deduce the Quadratic Reciprocity Law.

Exercise 2. Find a closed form for

(
−1

p

)
.

Exercise 3. Find a closed form for

(
2

p

)
. (Hint: Gauss’s Lemma! Consider the primes mod 8.)

Exercise 4. For which odd primes p is the sum of the distinct quadratic residues a multiple of p?

Exercise 5. Compute

(
6

673

)
.

Exercise 6. Compute

(
30

61

)
.

Exercise 7. Look back to when we computed ord23(5). We had to manually check if it was 11 or not. Is

there a way to see if 511 ≡ 1 (mod 23) or not without doing this?

5 More Problems
The following problems may use order, Legendre symbols, or both. Have fun!

Problem 1. Evaluate

(
1 · 2
p

)
+

(
2 · 3
p

)
+ · · ·+

(
(p− 2) · (p− 1)

p

)
.

Problem 2. Find, with proof, the number of x for which 1997 ∈ {−1997,−1996, . . . , 1996, 1997} and

1997|x2 + (x+ 1)2.

Problem 3. Prove that 2 is a primitive root mod 5n.

Problem 4. Let Fn = 22
n

+ 1 be the nth Fermat number. Show that if n ≥ 2 and p is a prime such that

p | Fn, then p ≡ 1 (mod 2n+2).

Problem 5. Show that for 0 < n < p− 1, p|1n + 2n + · · ·+ (p− 1)n.

Problem 6. Find the smallest prime factor of 122
15

+ 1.

Problem 7. (Vietnam TST 2004) Show that any number of the form 2n + 1 has no prime factors of the

form 8k − 1.

Problem 8. Show that when you write 23
n

+ 1 as the product of as many primes as possible, at least 2n of

them are 3 (mod 8).

Problem 9. (Taiwan 1997) Show that the nth Fermat number, Fn, is a prime number if and only if

Fn|3
Fn−1

2 + 1.

Problem 10. (USA TST 2008) Can n7 + 7 be a perfect square?
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