Introduction to Finite Fields

Srinath Mahankali (smahankali10@stuy.edu)

November 2020

1 Motivating Finite Fields

Consider this problem in the integers:

Problem 1

How many ordered pairs of integers (a, b) satisfy $a^{2}-2 b^{2}=1$?
While this problem only has to do with integers, it is helpful to factor as $(a-b \sqrt{2})(a+b \sqrt{2})$.

Solution

There are infinitely many ordered pairs (a, b) satisfying this equation. To show this, first observe that $(a, b)=$ $(1,0)$ works. Next, we claim that if (a, b) satisfies this equation, so does $(3 a+4 b, 2 a+3 b)$. To see this, observe that

$$
(3 a+4 b)^{2}-2(2 a+3 b)^{2}=\left(9 a^{2}+24 a b+16 b^{2}\right)-2\left(4 a^{2}+12 a b+9 b^{2}\right)=a^{2}-2 b^{2}=1 .
$$

Since $(3 a+4 b, 2 a+3 b)$ is also a solution, we can get infinitely many ordered pairs satisfying this equation.

How did we know that $(3 a+4 b, 2 a+3 b)$ would also work? The answer lies in our factorization $a^{2}-2 b^{2}=$ $(a-b \sqrt{2})(a+b \sqrt{2})$, where $a^{2}-2 b^{2}=1$. Using the fact that $(3-2 \sqrt{2})(3+2 \sqrt{2})=3^{2}-2 \cdot 2^{2}=1$, we can multiply the two equations together:

$$
\begin{aligned}
((a-b \sqrt{2})(3-2 \sqrt{2}))((a+b \sqrt{2})(3+2 \sqrt{2})) & =1 \\
((3 a+4 b)-(2 a+3 b) \sqrt{2})((3 a+4 b)+(2 a+3 b) \sqrt{2}) & =1 \\
(3 a+4 b)^{2}-2(2 a+3 b)^{2} & =1 .
\end{aligned}
$$

This is an example where it is helpful to use irrational numbers in a problem that only has to do with integers. Here is the $(\bmod p)$ version of this problem:

Problem 2

Let $p>2$ be a prime number such that the congruence $x^{2} \equiv 2(\bmod p)$ has no integer solutions. How many ordered pairs of integers (a, b) with $0 \leq a, b \leq p-1$ are there such that $a^{2}-2 b^{2} \equiv 1(\bmod p)$?

Let's develop a similar technique to solve this problem.

2 Definitions

Before we study finite fields, let's define some important terms.

Definition 1

A ring R is a set with two operations + and \cdot satisfying certain properties:

- R is commutative under both addition and multiplication,
- R is associative under both addition and multiplication,
- Multiplication is distributive over addition,
- Every element in R has an additive inverse, and
- R has an additive identity and a multiplicative identity.

A field K is a ring such that every nonzero element of K also has a multiplicative inverse.

Definition 2

Let A and B be rings, and let $f: A \rightarrow B$ be a function. We say f is a homomorphism if the following properties hold:

- $f(a+b)=f(a)+f(b)$,
- $f(a \cdot b)=f(a) \cdot f(b)$,
- $f\left(1_{A}\right)=1_{B}$.

If f is also a bijection from A to B, we say f is an isomorphism. If $A=B$, then we say f is an endomorphism. Finally, if f is an isomorphism and an endomorphism, we say f is an automorphism.

2.1 Exercises

Exercise 1. List out as many rings and fields as you can.
Exercise 2. Check that for any positive integer $n, \mathbb{Z} / n \mathbb{Z}$ is a ring.
Exercise 3. Check that $\mathbb{R}[x] /\left(x^{2}+1\right)$ is a ring. What does this ring remind you of?
Exercise 4. What are all the automorphisms of \mathbb{Z} ? What about \mathbb{C} ?
Exercise 5. Let f and g be endomorphisms of ring A. Prove that $f \circ g$ is also an endomorphism of A.
Exercise 6. Let A be a ring and suppose $\sigma: A \rightarrow A$ is an endomorphism. Let $P(x)$ be a polynomial with coefficients in A such that σ fixes the coefficients of P. Prove that $\sigma(P(a))=P(\sigma(a))$ for all a in A.

3 Primes

The simplest finite field is $\mathbb{Z} / p \mathbb{Z}$, or the integers $(\bmod p)$.

Theorem 1

The ring $\mathbb{Z} / p \mathbb{Z}$ is a field.

Proof

Since the ring axioms hold for $\mathbb{Z} / p \mathbb{Z}$, the only property we need to check is whether every nonzero element of $\mathbb{Z} / p \mathbb{Z}$ has a multiplicative inverse. Let a be an integer relatively prime to p. Then, using Bezout's Lemma, there exist integers x and y such that $a x+p y=1$. This means $a x \equiv 1(\bmod p)$, implying that a has a multiplicative inverse $(\bmod p)$.

This means $\mathbb{Z} / p \mathbb{Z}$ is a field! For this reason, it is sometimes denoted \mathbb{F}_{p}.

3.1 Exercises

Exercise 1. Let p be prime, and let $0<k<p$ be an integer. Prove that $p \left\lvert\,\binom{ p}{k}\right.$.
Exercise 2 (Frobenius Endomorphism). Let K be a ring containing \mathbb{F}_{p} for some prime p.

- Prove that the function $f: K \rightarrow K$ satisfying $f(a)=a^{p}$ for all $a \in K$ is an endomorphism.
- Prove that for any nonnegative integer k, the function $f: K \rightarrow K$ satisfying $f(a)=a^{p^{k}}$ for all $a \in K$ is an endomorphism.

Exercise 3 (Fermat's Little Theorem). Let p be a prime. Prove that $a^{p}=a$ for all $a \in \mathbb{F}_{p}$.
Exercise 4 (HMMT). Let $z=a+b i$ be a complex number with integer real and imaginary parts $a, b \in \mathbb{Z}$ where $i=\sqrt{-1}$, (i.e. z is a Gaussian integer). If p is an odd prime number, show that the real part of $z^{p}-z$ is an integer divisible by p.

4 Polynomials

Just like polynomials in $\mathbb{Q}[x], \mathbb{R}[x]$, or $\mathbb{C}[x]$, we can also work with polynomials in $\mathbb{F}_{p}[x]$.

Theorem 2 (Unique Factorization of Polynomials in \mathbb{F}_{p})

Let P be a monic polynomial with coefficients in \mathbb{F}_{p}. Then, P can be written as a product of monic irreducible polynomials in exactly one way.

In fact, a similar unique factorization theorem holds for polynomials in $K[x]$, for any field K ! The proof of this is almost identical to the proof of the Fundamental Theorem of Arithmetic. Polynomials in $\mathbb{F}_{p}[x]$ behave similarly to polynomials in $\mathbb{Q}[x], \mathbb{R}[x]$, or $\mathbb{C}[x]$.

Theorem 3 (Factor Theorem)

Let P be a polynomial such that $P(a)=0$ for some $a \in \mathbb{F}_{p}$. Then, $x-a$ is a factor of P.

Proof

Using the division algorithm, we can express $P(x)$ as $P(x)=(x-a) Q(x)+R$ for constant R. Setting x equal to a, we see that $R=P(a)=0$, implying that $P(x)=(x-a) Q(x)$.

In fact, a modified version of the Fundamental Theorem of Algebra is also true!

Theorem 4 (Lagrange's Theorem)

Let P be a polynomial in $\mathbb{F}_{p}[x]$ and let $d=\operatorname{deg}(P)$. Then, P has at most d roots, counting multiplicity.

Proof

This follows from the Unique Factorization Theorem. Since we are counting multiplicity, it is enough to show that P has at most d linear factors in its factorization into irreducible polynomials. Because each linear factor contributes 1 to the degree of P, which is equal to d, this is clear.

4.1 Exercises

Exercise 1. Factor the polynomial $x^{p}-x$ completely in \mathbb{F}_{p}. If p is odd, how does $x^{\frac{p-1}{2}}-1$ factor?
Exercise 2. Let K be a field containing \mathbb{F}_{p} and let $a \in K$ satisfy $a^{p}=a$. Prove that $a \in \mathbb{F}_{p}$. Generalize this statement.

Exercise 3. Fill in the steps to prove the Unique Factorization Theorem. Hint: prove the division algorithm and Bezout's Lemma for polynomials.

5 Problems

Problem 1. Let $f: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ be a function. Prove that there is some polynomial $P(x)$ with coefficients in \mathbb{F}_{p} such that $P(a)=f(a)$ for all a in \mathbb{F}_{p}.

Problem 2 (PUMaC). Let n be the number of polynomial functions from the integers modulo 2010 to the integers modulo 2010. If $n=p_{1} p_{2} \ldots p_{k}$, where the p_{i} are not necessarily distinct primes, what is $p_{1}+p_{2}+\cdots+p_{k}$?

Problem 3 (PUMaC). Suppose $P(x)$ is a degree n monic polynomial with integer coefficients such that 2013 divides $P(r)$ for exactly 1000 values of r between 1 and 2013 inclusive. Find the minimum value of n.

Problem $4(\mathrm{PUMaC})$. Let $p(n)=n^{4}-6 n^{2}-160$. If a_{n} is the least odd prime dividing $q(n)=|p(n-30) \cdot p(n+30)|$, find $\sum_{n=1}^{2017} a_{n} . \quad\left(a_{n}=3\right.$ if $q(n)=0$.)
Problem 5 (Wilson's Theorem). Let p be a prime. Prove that $(p-1)!\equiv-1(\bmod p)$.
Problem 6 (Evan Chen). Let $p>5$ be a prime. In terms of p, compute the remainder when

$$
\prod_{m=1}^{p-1}\left(m^{2}+1\right)
$$

is divided by p.
Problem 7. Let p be a prime. Prove that \mathbb{F}_{p} has a primitive root.
Problem 8 (PUMaC). Given a positive integer k, let $f(k)$ be the sum of the k-th powers of the primitive roots of 73. For how many positive integers $k<2015$ is $f(k)$ divisible by 73 ?

Problem 9 (CMIMC). Suppose $a_{0}, a_{1}, \ldots, a_{2018}$ are integers such that

$$
\left(x^{2}-3 x+1\right)^{1009}=\sum_{k=0}^{2018} a_{k} x^{k}
$$

for all real numbers x. Compute the remainder when $a_{0}^{2}+a_{1}^{2}+\cdots+a_{2018}^{2}$ is divided by 2017 .

