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1 Motivating Finite Fields
Consider this problem in the integers:

Problem 1

How many ordered pairs of integers (a, b) satisfy a2 − 2b2 = 1?

While this problem only has to do with integers, it is helpful to factor as (a− b
√

2)(a+ b
√

2).

Solution

There are infinitely many ordered pairs (a, b) satisfying this equation. To show this, first observe that (a, b) =

(1, 0) works. Next, we claim that if (a, b) satisfies this equation, so does (3a+ 4b, 2a+ 3b). To see this, observe

that

(3a+ 4b)2 − 2(2a+ 3b)2 = (9a2 + 24ab+ 16b2)− 2(4a2 + 12ab+ 9b2) = a2 − 2b2 = 1.

Since (3a+ 4b, 2a+ 3b) is also a solution, we can get infinitely many ordered pairs satisfying this equation.

How did we know that (3a + 4b, 2a + 3b) would also work? The answer lies in our factorization a2 − 2b2 =

(a− b
√

2)(a+ b
√

2), where a2− 2b2 = 1. Using the fact that (3− 2
√

2)(3 + 2
√

2) = 32− 2 · 22 = 1, we can multiply

the two equations together:(
(a− b

√
2)(3− 2

√
2)
)(

(a+ b
√

2)(3 + 2
√

2)
)

= 1(
(3a+ 4b)− (2a+ 3b)

√
2
)(

(3a+ 4b) + (2a+ 3b)
√

2
)

= 1

(3a+ 4b)2 − 2(2a+ 3b)2 = 1.

This is an example where it is helpful to use irrational numbers in a problem that only has to do with integers.

Here is the (mod p) version of this problem:

Problem 2

Let p > 2 be a prime number such that the congruence x2 ≡ 2 (mod p) has no integer solutions. How many

ordered pairs of integers (a, b) with 0 ≤ a, b ≤ p− 1 are there such that a2 − 2b2 ≡ 1 (mod p)?

Let’s develop a similar technique to solve this problem.

2 Definitions
Before we study finite fields, let’s define some important terms.
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Definition 1

A ring R is a set with two operations + and · satisfying certain properties:

• R is commutative under both addition and multiplication,

• R is associative under both addition and multiplication,

• Multiplication is distributive over addition,

• Every element in R has an additive inverse, and

• R has an additive identity and a multiplicative identity.

A field K is a ring such that every nonzero element of K also has a multiplicative inverse.

Definition 2

Let A and B be rings, and let f : A → B be a function. We say f is a homomorphism if the following

properties hold:

• f(a+ b) = f(a) + f(b),

• f(a · b) = f(a) · f(b),

• f(1A) = 1B .

If f is also a bijection from A to B, we say f is an isomorphism. If A = B, then we say f is an endomor-

phism. Finally, if f is an isomorphism and an endomorphism, we say f is an automorphism.

2.1 Exercises
Exercise 1. List out as many rings and fields as you can.

Exercise 2. Check that for any positive integer n,Z/nZ is a ring.

Exercise 3. Check that R[x]/(x2 + 1) is a ring. What does this ring remind you of?

Exercise 4. What are all the automorphisms of Z? What about C?

Exercise 5. Let f and g be endomorphisms of ring A. Prove that f ◦ g is also an endomorphism of A.

Exercise 6. Let A be a ring and suppose σ : A → A is an endomorphism. Let P (x) be a polynomial with

coefficients in A such that σ fixes the coefficients of P . Prove that σ(P (a)) = P (σ(a)) for all a in A.

3 Primes
The simplest finite field is Z/pZ, or the integers (mod p).

Theorem 1

The ring Z/pZ is a field.
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Proof

Since the ring axioms hold for Z/pZ, the only property we need to check is whether every nonzero element of

Z/pZ has a multiplicative inverse. Let a be an integer relatively prime to p. Then, using Bezout’s Lemma,

there exist integers x and y such that ax + py = 1. This means ax ≡ 1 (mod p), implying that a has a

multiplicative inverse (mod p).

This means Z/pZ is a field! For this reason, it is sometimes denoted Fp.

3.1 Exercises
Exercise 1. Let p be prime, and let 0 < k < p be an integer. Prove that p|

(
p
k

)
.

Exercise 2 (Frobenius Endomorphism). Let K be a ring containing Fp for some prime p.

• Prove that the function f : K → K satisfying f(a) = ap for all a ∈ K is an endomorphism.

• Prove that for any nonnegative integer k, the function f : K → K satisfying f(a) = ap
k

for all a ∈ K is an

endomorphism.

Exercise 3 (Fermat’s Little Theorem). Let p be a prime. Prove that ap = a for all a ∈ Fp.

Exercise 4 (HMMT). Let z = a+ bi be a complex number with integer real and imaginary parts a, b ∈ Z where

i =
√
−1, (i.e. z is a Gaussian integer). If p is an odd prime number, show that the real part of zp− z is an integer

divisible by p.

4 Polynomials
Just like polynomials in Q[x],R[x], or C[x], we can also work with polynomials in Fp[x].

Theorem 2 (Unique Factorization of Polynomials in Fp)

Let P be a monic polynomial with coefficients in Fp. Then, P can be written as a product of monic irreducible

polynomials in exactly one way.

In fact, a similar unique factorization theorem holds for polynomials in K[x], for any field K! The proof of this is

almost identical to the proof of the Fundamental Theorem of Arithmetic. Polynomials in Fp[x] behave similarly to

polynomials in Q[x],R[x], or C[x].

Theorem 3 (Factor Theorem)

Let P be a polynomial such that P (a) = 0 for some a ∈ Fp. Then, x− a is a factor of P .

Proof

Using the division algorithm, we can express P (x) as P (x) = (x− a)Q(x) +R for constant R. Setting x equal

to a, we see that R = P (a) = 0, implying that P (x) = (x− a)Q(x).

In fact, a modified version of the Fundamental Theorem of Algebra is also true!

Theorem 4 (Lagrange’s Theorem)

Let P be a polynomial in Fp[x] and let d = deg(P ). Then, P has at most d roots, counting multiplicity.
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Proof

This follows from the Unique Factorization Theorem. Since we are counting multiplicity, it is enough to show

that P has at most d linear factors in its factorization into irreducible polynomials. Because each linear factor

contributes 1 to the degree of P , which is equal to d, this is clear.

4.1 Exercises

Exercise 1. Factor the polynomial xp − x completely in Fp. If p is odd, how does x
p−1
2 − 1 factor?

Exercise 2. Let K be a field containing Fp and let a ∈ K satisfy ap = a. Prove that a ∈ Fp. Generalize this

statement.

Exercise 3. Fill in the steps to prove the Unique Factorization Theorem. Hint: prove the division algorithm and

Bezout’s Lemma for polynomials.

5 Problems
Problem 1. Let f : Fp → Fp be a function. Prove that there is some polynomial P (x) with coefficients in Fp such

that P (a) = f(a) for all a in Fp.

Problem 2 (PUMaC). Let n be the number of polynomial functions from the integers modulo 2010 to the integers

modulo 2010. If n = p1p2 . . . pk, where the pi are not necessarily distinct primes, what is p1 + p2 + · · ·+ pk?

Problem 3 (PUMaC). Suppose P (x) is a degree n monic polynomial with integer coefficients such that 2013

divides P (r) for exactly 1000 values of r between 1 and 2013 inclusive. Find the minimum value of n.

Problem 4 (PUMaC). Let p(n) = n4−6n2−160. If an is the least odd prime dividing q(n) = |p(n−30)·p(n+30)|,

find

2017∑
n=1

an. (an = 3 if q(n) = 0.)

Problem 5 (Wilson’s Theorem). Let p be a prime. Prove that (p− 1)! ≡ −1 (mod p).

Problem 6 (Evan Chen). Let p > 5 be a prime. In terms of p, compute the remainder when

p−1∏
m=1

(m2 + 1)

is divided by p.

Problem 7. Let p be a prime. Prove that Fp has a primitive root.

Problem 8 (PUMaC). Given a positive integer k, let f(k) be the sum of the k-th powers of the primitive roots of

73. For how many positive integers k < 2015 is f(k) divisible by 73?

Problem 9 (CMIMC). Suppose a0, a1, . . . , a2018 are integers such that

(x2 − 3x+ 1)1009 =

2018∑
k=0

akx
k

for all real numbers x. Compute the remainder when a20 + a21 + · · ·+ a22018 is divided by 2017.
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