# **Trigonometry and Geometry**

Srinath Mahankali (smahankali10@stuy.edu)

### New York City Math Team

Trigonometry can be a very useful tool for solving geometry problems.

## **1** Some More Trig Identities

Many problems involve a sum of trig functions when it is actually helpful to interpret it as a product of trig functions, and vice-versa. The product-to-sum and the sum-to-product formulas allow us to tackle these types of problems.

Theorem 1 (Product to Sum Formulas)

The following formulas hold:

- $\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)].$
- $\sin x \sin y = \frac{1}{2} [\cos(x-y) \cos(x+y)].$
- $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)].$

#### Proof

Expand using the angle addition and subtraction formulas.

Using these formulas, we can also convert sums of trig functions to products of trig functions.

**Theorem 2** (Sum to Product Formulas)

The following formulas hold:

- $\sin u + \sin v = 2\sin \frac{u+v}{2}\cos \frac{u-v}{2}.$
- $\cos u + \cos v = 2\cos \frac{u+v}{2}\cos \frac{u-v}{2}$ .
- $\cos u \cos v = -2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$ .

### Proof

Starting with the Product to Sum formulas, set u = x + y and v = x - y. Then,  $x = \frac{u+v}{2}$  and  $y = \frac{u-v}{2}$ . Then, the Sum to Product formulas hold as a result of the Product to Sum formulas.

### Exercises

**Exercise 1.** Simplify  $\sin 40 + \sin 50$  into one term using sum to product formulas.

**Exercise 2.** Simplify  $\sin 20 \cdot \sin 40$  using product to sum formulas.

# 2 Law of Sines

One way to relate the sides of a triangle to the angles opposite them is through the Law of Sines.

Theorem 3 (Law of Sines)

In triangle ABC,

$$\frac{BC}{\sin A} = \frac{AC}{\sin B} = \frac{AB}{\sin C} = 2R,$$

where R is the circumradius of triangle ABC.

#### Proof

First, a diagram:



Notice that  $\angle BOC = 2 \angle BAC$ . Dropping a perpendicular from the center O to BC at D cuts the length of BC in half, since  $\triangle BOC$  is isosceles. This perpendicular also cuts  $\angle BOC$  in half, so  $\angle BOD = \angle BAC$ . However, notice that  $\sin \angle BOD = \frac{BC}{2R}$ , or that

$$\frac{BC}{\sin \angle BOD} = 2R$$

as desired.

This proof only covers the case where  $\triangle ABC$  is an acute triangle, but the Law of Sines still holds true for obtuse triangles (can you prove this?).

### **Exercises**

**Exercise 1.** Prove the Law of Sines in the case where triangle ABC is obtuse.

**Exercise 2.** Suppose triangle ABC satisfies AB = 5 and AC = 4, and  $\sin \angle ABC = \frac{1}{2}$ . What is  $\sin \angle ACB$ ?

**Exercise 3.** Suppose triangle ABC satisfies AB = 5 and AC = 4, and  $\sin \angle ABC = \frac{1}{2}$ . What is the circumradius of  $\triangle ABC$ ?

# 3 Law of Cosines

Another way to relate the sides of a triangle to its angles is through the Law of Cosines.

Theorem 4 (Law of Cosines)

In triangle ABC with BC = a, AC = b, and AB = c, the following identities hold:

$$c^{2} = a^{2} + b^{2} - 2ab \cos \angle C$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos \angle B$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos \angle A$$

Proof

First, a diagram:



From the Pythagorean theorem, we see that

(

 $a^2 + b^2 - 2f^2 = d^2 + e^2.$ 

Listing out all information we have through trigonometry, we see that  $\cos \angle BCD = \frac{f}{a}, \sin \angle BCD = \frac{d}{a}, \cos \angle ACD = \frac{f}{b}$ , and  $\sin \angle ACD = \frac{e}{b}$ . Using the cosine angle addition formula, we see that

$$\cos \angle C = \cos(\angle BCD + \angle DCA) = \frac{f}{a} \cdot \frac{f}{b} - \frac{d}{a} \cdot \frac{e}{b} = \frac{f^2 - de}{ab}$$

This means

$$-2ab\cos\angle C = 2de - 2f^2,$$

implying that

$$a^{2} + b^{2} - 2ab \cos \angle C = d^{2} + 2de + e^{2} = (d + e)^{2} = c^{2}$$

as desired.

### **Exercises**

**Exercise 1.** In triangle ABC, AB = 3, AC = 8, and  $\angle A = 60^{\circ}$ . What is BC?

**Exercise 2.** In triangle ABC, AB = 7, AC = 5, and BC = 3. What is  $\cos \angle C$ ?

## **4 Problems**

**Problem 1.** Triangle *ABC* has side lengths AB = 13, BC = 14, and AC = 15. What is the area of triangle *ABC*?

**Problem 2** (AMC 12). Let ABC be an equilateral triangle. Extend side  $\overline{AB}$  beyond B to a point B' so that  $BB' = 3 \cdot AB$ . Similarly, extend side  $\overline{BC}$  beyond C to a point C' so that  $CC' = 3 \cdot BC$ , and extend side  $\overline{CA}$  beyond A to a point A' so that  $AA' = 3 \cdot CA$ . What is the ratio of the area of  $\triangle A'B'C'$  to the area of  $\triangle ABC$ ?

**Problem 3** (AMC 12). An object moves 8 cm in a straight line from A to B, turns at an angle  $\alpha$ , measured in radians and chosen at random from the interval  $(0, \pi)$ , and moves 5 cm in a straight line to C. What is the probability that AC < 7?

**Problem 4** (Stewart's Theorem). In  $\triangle ABC$ , we draw cevian AD. If AD = d, BD = m, CD = n, AB = c, AC = b and BC = a, prove that

$$amn + d^2a = b^2m + c^2n.$$

**Problem 5** (AMC 12). In  $\triangle ABC$  with integer side lengths,

$$\cos A = \frac{11}{16}$$
,  $\cos B = \frac{7}{8}$ , and  $\cos C = -\frac{1}{4}$ .

What is the least possible perimeter for  $\triangle ABC$ ?

**Problem 6** (AIME). In equilateral  $\triangle ABC$  let points D and E trisect  $\overline{BC}$ . Then  $\sin(\angle DAE)$  can be expressed in the form  $\frac{a\sqrt{b}}{c}$ , where a and c are relatively prime positive integers, and b is an integer that is not divisible by the square of any prime. Find a + b + c.

**Problem 7** (Ratio Lemma). In triangle ABC, we draw cevian AD. Prove that

$$\frac{BD}{CD} = \frac{AB\sin\angle BAD}{AC\sin\angle CAD}$$

Problem 8 (HMMT). Compute the value of

$$\frac{\cos 30.5 + \cos 31.5 + \ldots + \cos 44.5}{\sin 30.5 + \sin 31.5 + \ldots + \sin 44.5}.$$

**Problem 9** (AMC 12). Suppose that  $\triangle ABC$  is an equilateral triangle of side length s, with the property that there is a unique point P inside the triangle such that AP = 1,  $BP = \sqrt{3}$ , and CP = 2. What is s?

**Problem 10** (AIME). Triangle *ABC* has side lengths AB = 7, BC = 8, and CA = 9. Circle  $\omega_1$  passes through *B* and is tangent to line *AC* at *A*. Circle  $\omega_2$  passes through *C* and is tangent to line *AB* at *A*. Let *K* be the intersection of circles  $\omega_1$  and  $\omega_2$  not equal to *A*. Then  $AK = \frac{m}{n}$ , where *m* and *n* are relatively prime positive integers. Find m + n.