Trigonometry and Geometry

Srinath Mahankali (smahankali10@stuy.edu)
New York City Math Team

Trigonometry can be a very useful tool for solving geometry problems.

1 Some More Trig Identities

Many problems involve a sum of trig functions when it is actually helpful to interpret it as a product of trig functions, and vice-versa. The product-to-sum and the sum-to-product formulas allow us to tackle these types of problems.

Theorem 1 (Product to Sum Formulas)

The following formulas hold:

- $\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$.
- $\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$.
- $\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$.

Proof

Expand using the angle addition and subtraction formulas.

Using these formulas, we can also convert sums of trig functions to products of trig functions.

Theorem 2 (Sum to Product Formulas)

The following formulas hold:

- $\sin u+\sin v=2 \sin \frac{u+v}{2} \cos \frac{u-v}{2}$.
- $\cos u+\cos v=2 \cos \frac{u+v}{2} \cos \frac{u-v}{2}$.
- $\cos u-\cos v=-2 \sin \frac{u+v}{2} \sin \frac{u-v}{2}$.

Proof

Starting with the Product to Sum formulas, set $u=x+y$ and $v=x-y$. Then, $x=\frac{u+v}{2}$ and $y=\frac{u-v}{2}$. Then, the Sum to Product formulas hold as a result of the Product to Sum formulas.

Exercises

Exercise 1. Simplify $\sin 40+\sin 50$ into one term using sum to product formulas.
Exercise 2. Simplify $\sin 20 \cdot \sin 40$ using product to sum formulas.

2 Law of Sines

One way to relate the sides of a triangle to the angles opposite them is through the Law of Sines.

Theorem 3 (Law of Sines)
In triangle $A B C$,

$$
\frac{B C}{\sin A}=\frac{A C}{\sin B}=\frac{A B}{\sin C}=2 R
$$

where R is the circumradius of triangle $A B C$.

Proof

First, a diagram:

Notice that $\angle B O C=2 \angle B A C$. Dropping a perpendicular from the center O to $B C$ at D cuts the length of $B C$ in half, since $\triangle B O C$ is isosceles. This perpendicular also cuts $\angle B O C$ in half, so $\angle B O D=\angle B A C$. However, notice that $\sin \angle B O D=\frac{B C}{2 R}$, or that

$$
\frac{B C}{\sin \angle B O D}=2 R
$$

as desired.

This proof only covers the case where $\triangle A B C$ is an acute triangle, but the Law of Sines still holds true for obtuse triangles (can you prove this?).

Exercises

Exercise 1. Prove the Law of Sines in the case where triangle $A B C$ is obtuse.
Exercise 2. Suppose triangle $A B C$ satisfies $A B=5$ and $A C=4$, and $\sin \angle A B C=\frac{1}{2}$. What is $\sin \angle A C B$?
Exercise 3. Suppose triangle $A B C$ satisfies $A B=5$ and $A C=4$, and $\sin \angle A B C=\frac{1}{2}$. What is the circumradius of $\triangle A B C$?

3 Law of Cosines

Another way to relate the sides of a triangle to its angles is through the Law of Cosines.

Theorem 4 (Law of Cosines)
In triangle $A B C$ with $B C=a, A C=b$, and $A B=c$, the following identities hold:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos \angle C \\
& b^{2}=a^{2}+c^{2}-2 a c \cos \angle B \\
& a^{2}=b^{2}+c^{2}-2 b c \cos \angle A
\end{aligned}
$$

Proof

First, a diagram:

From the Pythagorean theorem, we see that

$$
a^{2}+b^{2}-2 f^{2}=d^{2}+e^{2}
$$

Listing out all information we have through trigonometry, we see that $\cos \angle B C D=\frac{f}{a}$, $\sin \angle B C D=$ $\frac{d}{a}, \cos \angle A C D=\frac{f}{b}$, and $\sin \angle A C D=\frac{e}{b}$. Using the cosine angle addition formula, we see that

$$
\cos \angle C=\cos (\angle B C D+\angle D C A)=\frac{f}{a} \cdot \frac{f}{b}-\frac{d}{a} \cdot \frac{e}{b}=\frac{f^{2}-d e}{a b} .
$$

This means

$$
-2 a b \cos \angle C=2 d e-2 f^{2},
$$

implying that

$$
a^{2}+b^{2}-2 a b \cos \angle C=d^{2}+2 d e+e^{2}=(d+e)^{2}=c^{2},
$$

as desired.

Exercises

Exercise 1. In triangle $A B C, A B=3, A C=8$, and $\angle A=60^{\circ}$. What is $B C$?
Exercise 2. In triangle $A B C, A B=7, A C=5$, and $B C=3$. What is $\cos \angle C$?

4 Problems

Problem 1. Triangle $A B C$ has side lengths $A B=13, B C=14$, and $A C=15$. What is the area of triangle $A B C$?

Problem 2 (AMC 12). Let $A B C$ be an equilateral triangle. Extend side $\overline{A B}$ beyond B to a point B^{\prime} so that $B B^{\prime}=3 \cdot A B$. Similarly, extend side $\overline{B C}$ beyond C to a point C^{\prime} so that $C C^{\prime}=3 \cdot B C$, and extend side $\overline{C A}$ beyond A to a point A^{\prime} so that $A A^{\prime}=3 \cdot C A$. What is the ratio of the area of $\triangle A^{\prime} B^{\prime} C^{\prime}$ to the area of $\triangle A B C$?

Problem 3 (AMC 12). An object moves 8 cm in a straight line from A to B, turns at an angle α, measured in radians and chosen at random from the interval $(0, \pi)$, and moves 5 cm in a straight line to C. What is the probability that $A C<7$?

Problem 4 (Stewart's Theorem). In $\triangle A B C$, we draw cevian $A D$. If $A D=d, B D=m, C D=n, A B=$ $c, A C=b$ and $B C=a$, prove that

$$
a m n+d^{2} a=b^{2} m+c^{2} n
$$

Problem 5 (AMC 12). In $\triangle A B C$ with integer side lengths,

$$
\cos A=\frac{11}{16}, \quad \cos B=\frac{7}{8}, \quad \text { and } \quad \cos C=-\frac{1}{4}
$$

What is the least possible perimeter for $\triangle A B C$?
Problem 6 (AIME). In equilateral $\triangle A B C$ let points D and E trisect $\overline{B C}$. Then $\sin (\angle D A E)$ can be expressed in the form $\frac{a \sqrt{b}}{c}$, where a and c are relatively prime positive integers, and b is an integer that is not divisible by the square of any prime. Find $a+b+c$.

Problem 7 (Ratio Lemma). In triangle $A B C$, we draw cevian $A D$. Prove that

$$
\frac{B D}{C D}=\frac{A B \sin \angle B A D}{A C \sin \angle C A D}
$$

Problem 8 (HMMT). Compute the value of

$$
\frac{\cos 30.5+\cos 31.5+\ldots+\cos 44.5}{\sin 30.5+\sin 31.5+\ldots+\sin 44.5}
$$

Problem 9 (AMC 12). Suppose that $\triangle A B C$ is an equilateral triangle of side length s, with the property that there is a unique point P inside the triangle such that $A P=1, B P=\sqrt{3}$, and $C P=2$. What is s ?

Problem 10 (AIME). Triangle $A B C$ has side lengths $A B=7, B C=8$, and $C A=9$. Circle ω_{1} passes through B and is tangent to line $A C$ at A. Circle ω_{2} passes through C and is tangent to line $A B$ at A. Let K be the intersection of circles ω_{1} and ω_{2} not equal to A. Then $A K=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.

