Inversion Problems

Ethan Joo

October 9, 2020

Problems

1. (ELMO 2018 P3) Let A be a point in the plane, and ℓ a line not passing through A. Evan doesn't have a straightedge, but instead has a special compass which has the ability to draw a circle through three distinct noncollinear points. (The center of the circle is not marked in this process.) Additionally, Evan can mark the intersections between two objects drawn, and can mark an arbitrary point on a given object or on the plane.
(i) Can Evan construct the reflection of A over ℓ ?
(ii) Can Evan construct the foot of the altitude from A to ℓ ?
2. Let the incircle of triangle $A B C$ touch sides $B C, C A, A B$ at points D, E, F respectively. Let I and O be the incenter and circumcenter of triangle $A B C$ respectively. Prove that the orthocenter of triangle $D E F$ lies on line $I O$.
3. (Mixtillinear Incircles) Let Γ be the circumcircle of triangle $A B C$. Circle ω is tangent to $A B, A C$, and internally tangent to Γ at point T. Let D be the touchpoint of the A-excircle with $B C$. Prove that $\angle B A D=\angle T A C$.
4. (GOTEEM 2019 P 2) Let $A B C$ be an acute triangle with $A B \neq A C$, and let D, E, F be the feet of the altitudes from A, B, C, respectively. Let P be a point on $D E$ such that $A P \perp A B$ and let Q be a point on $D F$ such that $A Q \perp A C$. Lines $P Q$ and $B C$ intersect at T. If M is the midpoint of $\overline{B C}$, prove that $\angle M A T=90^{\circ}$.
