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Angle chasing is the foundation of geometry, so we go in depth on the technique. Although it is built on

very few rules, it can get very tricky at times.

1 Basic Facts

`1

`2

Fact 1

If `1 and `2 intersect at a point, then we split the 360◦ around this point into four angles, and opposite

pairs of angles are equal to each other.

`1

`2

`

Fact 2

If `1 ‖ `2 and ` is a line not parallel to these two lines, then the acute angle formed by `1 and ` is

congruent to the acute angle formed by `2 and `.

It is important to note that the converse of Fact 2 is true; that is, if ` intersects lines `1 and `2 and creates

equal angles, we must have `1 ‖ `2.

Fact 2 is actually enough to prove one of the most imporant facts when it comes to angle chasing.
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Example

Prove that the sum of the angles of any triangle ABC is 180◦.

Proof

Draw a triangle and draw the line ` parallel to BC through A.

A

B C

By Fact 2, we see that ∠ACB is equal to the angle between AC and ` (i.e. the blue angles are equal).

Similarly, we see that ∠CBA is equal to the angle between AB and ` (i.e. the green angles are equal).

Then the sum of the angles of the triangle is equal to the angle of a line, which is just 180◦.

In fact, a much more general result is true.

Theorem (Sum of angles in a polygon with n sides)

The sum of the angles in an n-gon (a polygon with n sides) is 180◦(n− 2).

The proof of this fact is a lot harder than the above proof. If you want, try to prove this fact! (Hint: Show

that you can partition any polygon into triangles.)

2 Some Exercises
Exercise 1 (2019 DMI Marathon/1). In a quadrilateral, the angles form a geometric sequence with common

ratio 2019. Compute the average of all the angles in the quadrilateral.

Exercise 2 (2020 AMC 10B/4). The acute angles of a right triangle are a◦ and b◦, where a > b and both

a and b are prime numbers. What is the least possible value of b?

Exercise 3 (2019 CMIMC Geometry/1). The figure below depicts two congruent triangles with angle

measures 40◦, 50◦, and 90◦. What is the measure of the obtuse angle α formed by the hypotenuses of these

two triangles?
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Exercise 4 (2018 CMIMC Geometry/1). Let ABC be a triangle. Point P lies in the interior of 4ABC
such that ∠ABP = 20◦ and ∠ACP = 15◦. Compute ∠BPC − ∠BAC.

Exercise 5. In the following diagram, what is the angle labeled with “?”? (The two long lines are parallel.)

3 Circles and Angles

First we define what we mean by the measure of arc X̂Y .

Definition

For points X and Y on a circle with center O, then the measure of arc X̂Y (often shortened as X̂Y ) is

defined to be either ∠XOY or the reflex angle ∠XOY , depending on context.

XY

O

The smaller of the two arcs is called “minor arc X̂Y ”, while the other one is called “major arc X̂Y ”.
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With this definition, we can state the inscribed angle theorem.

Theorem (Inscribed Angle Theorem)

If X,A, and Y are points on a circle centered at O, then ∠XAY is equal to half of X̂Y , where we choose

either the normal angle or the reflex angle so that it and ∠XAY “point in the same direction”.

The statement of the theorem isn’t entirely clear, so here are a few examples.

O O

O

X

X

XY

Y

Y

A A

A

To prove the inscribed angle theorem, we require one more fact.

Fact 3

If 4ABC is isosceles with AB = AC, then ∠ABC = ∠ACB.

Now we can prove the inscribed angle theorem.

Proof

There are 3 cases: when A is on minor arc XY , major arc XY , or if XY is a diameter. All three cases

are similar, so we just show the first case. You should complete the other two cases though.

O

XY

A

Label ∠OAY = α and ∠OAX = β. Since OA = OY , we have ∠OAY = ∠OY A = α. Since the sum of

the angles of 4OAY is 180◦, we must have ∠AOY = 180◦ − 2α. Similarly, ∠AOX = 180◦ − 2β. Then

∠XOY = 360◦ − (∠AOY + ∠AOX) = 360◦ − ((180◦ − 2α) + (180◦ − 2β)) = 2(α+ β) = 2∠XAY

as desired.

Note that this implies that if A lies on a circle with diameter XY , then ∠XAY = 90◦.
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4 More Exercises
Exercise 1. If A,B,C,D lie on a circle in that order, prove that ∠BAC = ∠BDC.

Exercise 2. If A,B,C,D lie on a circle in that order, prove that ∠ABC+∠CDA = ∠DAB+∠BCD = 180◦.

Exercise 3. Suppose A,B,C,D lie on a circle such that AC and BD intersect inside the circle at a point

P . Show that ∠APB = ÂB+ĈD
2 .

Exercise 4. Suppose A,B,C,D lie on a circle such that the extension of AB past B and the extension of

CD past C intersect outside the circle at a point P . Show that ∠BPC = ÂD−B̂C
2

Exercise 5 (Reim’s Theorem). Let ω1 and ω2 be two circles that intersect at X and Y . Draw a line through

X that intersects ω1 at A and ω2 at B. Draw a line through Y that intersects ω1 at C and ω2 at D. Prove

that AC ‖ BD.
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