1. If

$$S = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}$$

compute the value of S.

2. If

$$\frac{58}{15} = 3 + \frac{1}{1 + \frac{1}{6+1}}$$

compute the value of x.

- 3. Investigate the following sequence of fractions:
 - (a) $\frac{A_1}{B_1} = 1 + \frac{1}{1}$
 - (b) $\frac{A_2}{B_2} = 1 + \frac{1}{1 + \frac{1}{1}}$
 - (c) $\frac{A_3}{B_3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$
 - (d) $\frac{A_4}{B_4} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}$
 - (e) Consider the sequence $1, 1, A_1, A_2, A_3, A_4, \ldots$ Predict the next three terms.
- 4. If $S = 2 + \frac{1}{6+} \frac{1}{1+} \frac{1}{1+} \frac{1}{11+} \frac{1}{2}$, compute S.
- 5. Compute [3; 3, 1, 2, 2, 1, 9].
- 6. Compute [0; 3, 3, 1, 2, 2, 1, 9]
- 7. Express each of the following fractions as continued fractions in two ways: (a) $\frac{159}{86}$ (b) $\frac{79}{13}$ (c) $\frac{251}{802}$
- 8. Compute S if

$$S = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}.$$

- 9. Compute S if $S = [2; \overline{2}]$
- 10. Compute S if $S = [1; \overline{2,1}]$
- 11. Compute S if $S = [3; \overline{1,4}]$
- 12. Compute S if $S = 1 + \frac{1}{2+} \frac{1}{3+} \frac{1}{2+} \frac{1}{3+} \dots$
- 13. Compute $[3; \overline{1,2,3}]$.
- 14. Find a continued fraction expansion for the following:
 - (a) $\sqrt{5}$
 - (b) $\sqrt{7}$
 - (c) $\sqrt{11}$
 - (d) $\sqrt{19}$

Continued Fractions

- 15. Find a continued fraction expansion for 3.14159.
- 16. Find a continued fraction expansion for 2.71828.
- 17. Using the continued fraction expansions from 14 above, find the four convergents for $\sqrt{5}$ and $\sqrt{7}$.
- 18. Using the continued fraction expansions from 14 above, find the five convergents for $\sqrt{19}$.
- 19. Using the continued fraction expansions from 15 above, find the four convergents for 3.14159.
- 20. Complete the following table:
- 21. Use the continued fraction expansions found in 14 to find positive integer solutions to the following equations:

(a)
$$x^2 - 5y^2 = 1$$

(b)
$$x^2 - 7y^2 = 1$$

(c)
$$x^2 - 19y^2 = 1$$

22. Find three solutions in positive integers to $x^2 - 11y^2 = 1$.